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Chapter 1

Historical introduction

The development of quantum mechanics in the 1920s was probably the greatest advance
in physical science. It was not easy. The principles of quantum mechanics were so con-
trary to the human intuition built upon classical mechanics that, as S. Weinberg writes,
“quantum mechanics has won acceptance through its success” [7]. Indeed, as we shall see
along this course, quantum mechanics is essential to modern atomic, molecular, nuclear,
and elementary particle physics, and to a great deal of chemistry and condensed matter
physics as well. Many of the revolutionary technological developments of the last hundred
years rely on quantum mechanics, from semiconductor physics (transistors, diodes, inte-
grated circuits, and hence the computing and IT industries) to all applications of quantum
information, including quantum cryptography and quantum authentication.

In this chapter we will consider the problems confronted by physicists in the first years of
the 20th century that ultimately led to modern quantum mechanics. We can summarise
them shortly below:
(*)1801-03: Interference/diffraction experiments by Young show that light is a wave
(*)1862-4: Maxwell identifies light as an EM (electromagnetic) wave
(*)1897: Thompson discovers the electron, the first elementary particle
(*)1900: Planck introduces the energy-frequency relation, with h as a new physical con-
stant, and derives the black body spectrum
(*)1905: Einstein imparts clearer physical meaning to photons, using them to explain the
photoelectric effect, and other experimental results
(*) 1909: In a version of the double slit experiment, G.I. Taylor demonstrates that light
produces a wave-like interference pattern on photographic film even when the light source
is filtered so that only one photon at a time is recorded by the film
(*) 1911: Based on scattering experiments, Rutherford proposes a model of the atom with
most of its mass concentrated in a small, compact nucleus
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(*) 1913: Bohr proposes an atomic model with electrons orbiting a nucleus and with quan-
tisation of their angular momentum, using this to derive observed line spectra
(*) 1923: Compton scattering of X-rays on electrons confirms that photons are relativistic
particles of zero rest mass
(*) 1923-24: de Broglie proposes wave-particle duality for matter, as for radiation
(*) 1925-30: The emergence of Quantum Mechanics, through work of Heisenberg, Born,
Jordan, Dirac, Pauli, Schrödinger, and others.
(*) 1927-28: Diffraction experiments of Davisson, Germer and Thompson confirm that
electrons behave as waves as well as particles .

From this quick historical overview, we can see that everything started because of a number
of impressive improvements in technology and the discovery of radioactivity that enabled
physicists to study in some detail the internal structure of atoms, the mass and charge of
the electron, and the interaction of atoms with light. Certain aspects of atomic physics
which emerged from these early investigations were puzzling and even paradoxical, in the
sense that the observed behaviour of electrons, atoms, and light seemed in contradiction to
the known laws of mechanics and electromagnetism. These surprising aspects fell roughly
into three categories: (i) the particle-like behaviour of light waves, which includes black-
body radiation, the photoelectric effect, the Compton effect, (ii) the puzzling stability of
the atom and (iii) the wave-like behaviour of particles.

In this chapter we will first recap the basic concepts of classical mechanics and wave
mechanics that are needed in order to be surprised by the evidences that led to quantum
mechanics. We then explore in turn each of the three aspects that we just mentioned.

1.1 Particles and waves in classical mechanics

In order to start our journey in understanding quantum mechanics, it is useful to quickly
recap what are the basic concepts of classical mechanics. Roughly speaking, in classical
mechanics, one can describe motion in terms of either particles or waves. Classically, they
are distinctly different things. In our every day life, we intuitively think of some things as
particles (like bullets, cars, cats etc) while some other things as waves (sound waves, water
waves, radio etc), because they seemingly behave very differently.

Particles are objects that carry energy and momentum in infinitesimally localised points
of space, hence one often calls them “point particles”. In the classical world, the state of
a particle is determined by 3-dimensional vectors indicating its position x and its velocity
v = ẋ ≡ dx/dt. If you specify both bits of information at some time t0 then you can use
the equation of motion

F(x(t), ẋ(t)) = mẍ(t) (1.1)

to determine x(t) and ẋ(t) for all time. Importantly, it’s not enough to just know only,
say, the position of the particle at t = t0. You need both x(t0) and ẋ(t0). Mathematically,
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this is because the equation of motion is a second order differential equation and so you
need to specify two integration constants to get a unique solution.

Waves, on the other hand, describe motion of entities which are spread out and are not
localised. For example, sound is carried by the compression and decompression of air, and
the displacement of some parcel of air molecules from its original undisturbed position
obeys the wave equation. Also, classical electric fields and magnetic fields are described by
waves (you will study this in great detail in the Part IB Electromagnetism class).
From a mathematical point of view, we will refer to waves as any real or complex-valued
function with periodicity in time and/or space.

• A function of time t obeying f(t+T ) = f(t) has period T , frequency ν = 1/T , and
angular frequency

ω = 2πν = 2π/T . (1.2)

Familiar examples are f(t) = cosωt, sinωt or exp(±iωt).

• A function of position x (in one dimension) obeying f(x+λ) = f(x) has wavelength
λ and wavenumber

k = 2π/λ (1.3)

Examples are f(x) = cos kx, sin kx or exp(±ikx).

• The analogous functions of a position vector x with periodicity in three dimensions are
f(x) = exp(ik ·x) where k is the wave vector, and the wavelength is then λ = 2π/|k|.
We shall refer to such functions as plane waves.

The wave equation in one dimension for a function f(x, t) is

∂2f(x, t)

∂t2
− c2∂

2f(x, t)

∂x2
= 0 (1.4)

where c is some constant. This has solutions which are periodic in both position and
time:

f±(x, t) = A± exp(±ikx− iωt ) (1.5)

provided that the wavelength and frequency are related by

ω = ck or λν = c . (1.6)

As in Newton’s law of motion, Eq. (1.1), the wave equation is a 2nd order in time derivative:
this means that we need to specify two initial conditions f(x, 0) and f ′(x, 0) to get a unique
solution, as it occurs in particle dynamics.
From a physics point of view, such solutions represent waves which move or propagate with
speed c to the right or left, according to the sign in Eq. (1.5) (assuming ω, k > 0). The
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constant A± is the amplitude of the wave. The three-dimensional wave equation is obtained
by replacing ∂2/∂x2 by ∇2 in Eq. (1.4). This has solutions of an analogous form

f(x, t) = A exp( ik·x − iωt ) with ω = c|k| . (1.7)

Such a wave propagates in the direction of k, with speed c. For electromagnetic waves
c ≈ 3 · 108 m/s is the speed of light.
There is an important remark: other kinds of waves arise as solutions of other governing
equations which may differ significantly from the standard wave equation. A function does
not have to satisfy the standard wave equation in order to be usefully thought of as a wave!
The Schrödinger Equation is one example of an alternative governing equation; it is the
central equation in QM and we will study it in some depth in the next chapter. Different
governing equations give rise to propagating solutions, provided the frequency is chosen
to be a suitable function of the wavenumber, ω(k). Moreover, if the governing equation is
linear in f , then any solutions f1 and f2 can be combined to give a new solution:

f = f1 + f2 (1.8)

This is the Principle of Superposition and it is responsible for much behaviour we tend to
think of as wave-like.
Interference (or diffraction) occurs when waves from different sources merge, or when parts
of a wave recombine after passing around or through some obstacle. When a number of
such waves are superposed, they may interfere constructively, increasing the size of the
amplitude, or destructively, diminishing the amplitude. The result is an interference or
diffraction pattern which depends on the sources and on the obstacles. When light is
passed through a number of narrow slits, the resulting diffraction pattern provides conclu-
sive evidence that light is a wave. Passing higher energy waves, such as X-rays, through
matter gives a way of determining the crystalline arrangement of atoms from the resulting
diffraction patterns.

1.2 The particle-like behaviour of light waves

In this section we briefly discuss the first set of puzzling evidences about the behaviour of
light, that seemed in contradiction to the known laws of mechanics and electromagnetism,
in particular we discuss the evidences that displayed a particle-like behaviour of light waves,
which includes black-body radiation, the photoelectric effect and the Compton effect.

1.2.1 Black-body radiation

The black-body radiation measurements, pioneered by G. Kirchhoff in 1859, have shown
that in the thermal equilibrium, the power of electromagnetic radiation by a fully absorbing
(“black”) surface, per unit frequency interval, drops exponentially at high frequencies.
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This is not what could be expected from the combination of classical electrodynamics
and statistics, which predicted an infinite growth of the radiation density with frequency.
Classical statistics predicts that in the thermal equilibrium at temperature T , the average
energy E of each of the electromagnetic modes of the waves emitted by a black body should
be equal to kBT , where kB is the Boltzmann constant, kB ∼ 1.410−16erg/K. Combining
this with the count of electromagnetic modes in a black-body cavity, we readily get the
so-called Rayleigh-Jeans formula1 for the average electromagnetic wave energy per unit
volume:

I(ω) ∝ ρ(ω) =
ω2

π2c3
kBT. (1.9)

The prediction that ρ(ω) is proportional to ω2 was actually in agreement with observation
for small values of ω , but it fails badly for larger values, see Fig. 1.1. Indeed, it diverges at
ω →∞ – the so-called ultraviolet catastrophe. On the other hand, the blackbody radiation

Figure 1.1: Schematic illustration of the Rayleigh-Jeans prediction versus the Planck
prediction for the intensity of radiation emitted by a black body at equilibrium at a given
temperature T as a function of the emitted light angular frequency ω.

measurements were compatible with the phenomenological law suggested in 1900 by Max
Planck:

I(ω) ∝ ρ(ω) =
ω2

π2c3

~ω
exp(~ω/kBT )− 1

, (1.10)

where ~ = h/(2π) was a constant, which was fitted to give

h ∼ 6.626 · 10−34Joule× sec ~ =
h

2π
∼ 1.055 · 10−34 Joule× sec, (1.11)

1A numerical error in Rayleigh’s derivation was corrected by his student J. Jeans in 1905.
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where h is the Planck constant, while ~ is often referred to as reduced Planck constant2.
The dimension of the new constant h, are

[h] = M L2 T−1 = [energy]× [time] = [position]× [momentum]. (1.12)

This is the same dimension as angular momentum and of the action in classical mechan-
ics

Although at the beginning it appeared simply as a constant in a fit of a set of data, we now
think of this constant as representing the “strength” of quantum effects. Despite having
these new profound features, early 20th century physicists were guided by the expectation
to recover classical physics in limit ~ → 0. Indeed, in this limit, the Planck law reduces
exactly to the Rayleigh-Jeans law.

After the initial formula to fit the data, Planck later gave a derivation of the above formula,
based on the assumption that the radiation inside the back-body was quantised, i.e. the
energy of the radiation comes in integer multiples of ~ω. A simpler derivation compared
to the original by Planck is given by Weinberg in Ref. [7], following the derivation of the
black-body formula by Hendrik Lorentz in 1910. If you are curious, you can read about it
in the Appendix of these notes.

Despite the success of Planck’s description of the data, there remained considerable skep-
ticism about the reality of light quanta. It could have just been a mathematical trick to
derive the desired result. It was only thanks to further experimental evidences including
the photoelectric effect and the Compton scattering that the existence of these light quanta
was accepted.

1.2.2 The photoelectric effect

In the late 19th century, experiments took place, in which a metal surface was hit in
the vacuum with monochromatic light. Changing the frequency and the intensity of the
incident light, it was observed that at certain frequencies, electrons were emitted from the
metal surface, as in Fig. 1.2. This effect is known as the photoelectric effect. Surprisingly,
whether the electrons were emitted or not depended only on the frequency, and not on
the intensity of the incident light, while the rate of emitted electrons depended on its
intensity!

The observed effects were hard to explain in terms of the electromagnetic wave model of
light. If we think of an incident wave transmitting energy to the electrons and knocking
them out of the metal, we would expect the rate of electron emission to be constant, and we
would also expect that light of any frequency would eventually transmit enough energy to

2Older books on quantum mechanics often like to use h, but in these lectures we will use ~, as most
modern physicists now do.
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electrons to cause some of them to be emitted, as the intensity of light I = |A|2 increases.
But this was not what was observed. On the contrary, to emit any electrons, the incident
light needed to have an angular frequency ω (with ω = 2πc/λ, where λ is the wavelength of
the incident light) above a given threshold, depending on the particular metal. When the
angular frequency was large enough to emit electrons from the metal surface, the maximum
energy of the emitted electrons, Emax, was found to be proportional to ω and to obey

Emax = ~ω − Φ, (1.13)

where Φ is the so-called work function of the metal and the constant of proportionality ~
is the reduced Planck constant that we encountered in the previous section.

Figure 1.2: Schematic illustration of the photoelectric effect. [Licensed under Wikimedia
Commons]

To explain the photoelectric effect, Albert Einstein (in 1905) was led to postulate that light
is quantised in small light quanta called photons, and that a photon of angular frequency ω
has an energy proportional to ω, E = ~ω. The photoelectric effect can be explained as the
result of single photons hitting single electrons near the metal surface, if one assumes that
an electron needs to acquire a kinetic energy ≥ Φ to overcome the binding energy of the
metal. An electron which acquires an energy ~ω thus carries away an energy that is less
or equal to ~ω−Φ = Emax. This allows one to explain the emission rate observations: the
average rate of photon arrival is proportional to the intensity of the light, and the rate of
emission of electrons is proportional to the rate of scattering with photons. Therefore, the
number of electrons emitted is proportional to the intensity of the incident light I.
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1.2.3 The Compton scattering

A further evidence of the quantised nature of light was obtained nearly twenty years later,
in 1923, when Arthur H. Compton observed the scattering of X-rays by electrons associated
with atoms in a crystal, the Compton scattering. Because the X-ray energies were much

Figure 1.3: Left: the spectrum of radiation scattered by carbon at a given angle θ, showing
the unmodified line on the right and the shifted line on the left. Right: kinematics for the
Compton effect.

larger than the electron binding energies, the electrons can effectively be modelled as
free electrons. According to classical theory, the mechanism that explains it is the re-
radiation of light by the electrons, which are set into forced oscillations by the incident
radiation, and this leads to prediction of intensity observed at an angle θ that varies
as (1 + cos2 θ) and has the frequency as the incident radiation. Compton found that the
radiation scattered through a given angle actually consists of two components: the expected
one, whose frequency is the same as that of the incident radiation, and the unexpected one,
whose frequency was shifted relative to the incident frequency by an amount that depended
on the angle θ (see left panel in Fig. 1.3 for a schematic illustration). Compton was able
to explain the angle-dependent component by treating the incoming radiation as a beam
of photons of energy ~ω. Thus, the scattering results from collisions between a single
photon in one beam and a single electron in the other, in which energy and momentum
are transferred between the photon and the electron. (A relativistic treatment of this
scattering process was given in the IA Dynamics and Relativity course, see right panel of
Fig. 1.3 to recollect it.) This explanation is consistent with the observed scattering data
and with conservation of (relativistic) energy and momentum. Provided we assume that a
photon of angular frequency ω has a definite momentum p = ~k, where k is the wavevector
of the corresponding electromagnetic wave, so that |p| = ~|k| = ~ω/c, then

1

ω′
=

1

ω
+

~
mc2

(1− cos θ). (1.14)
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Again, in the limit of ~→ 0, the result tends to the one predicted by classical mechanics.
This is yet another example of correspondence principle. Compton’s experiment convinced
physicists that light can be treated as a stream of particle-like objects, the photons, whose
energy is proportional to the light wave’s frequency.

1.3 Atomic spectra

After discovering the electron in 1897, J.J. Thomson proposed a model of the atom as a
sort of “plum pudding” with Z point-like electrons of charge −e embedded in a sphere of
positive charge +Ze. In 1908, Geiger and Marsden’s famous experiment, carried out at

Figure 1.4: Schematic illustration of the Rutherford experiment. From
http://physicsopenlab.org/2017/04/11/the-rutherford-geiger-marsden-experiment.

Rutherford’s suggestion, tested for large angle scattering of a beam of α-particles directed at
gold foil. One would not expect significant scattering from a loosely distributed low charge
density “plum pudding” atom. Instead some α-particles were observed to be scattered
through very large angles of up to 180°. In Rutherford’s famous phrase, “It was as if you
fired a 15-inch shell at tissue paper and it came back and hit you.” See Fig. 1.4 for a
schematic illustration. The scattering suggests a high density positive charge within the
atom. Rutherford thus postulated a new model of the atom, with a heavy nearly point-like
nucleus, of charge +Ze, surrounded by Z electrons in orbit.

Although the Rutherford atom was more compatible with the observed scattering data than
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was the “plum pudding” model, it had a number of theoretical defects. First, according
to Maxwell’s electrodynamics, electrons in orbit around a nucleus would radiate, since
they are continually undergoing acceleration3. This would cause them to lose energy and
fall in towards the nucleus. Stationary electrons would also fall into the nucleus because
of electrostatic attraction. This would suggest that atoms must be unstable, which they
generally are not. Second, the model fails to explain why atoms have characteristic line
spectra corresponding to discrete frequencies at which they absorb or emit light. For
example, hydrogen has frequencies given by the Rydberg formula (Rydberg, 1890):

ωmn = 2πcR0

(
1

n2
− 1

m2

)
for m > n, (1.15)

with R0 being Rydberg constant R0 = 1.097×107m−1 and the frequency ωmn corresponding
to the line spectra for the decay from the atomic state m to the atomic state n. Third, it
fails to explain why atoms belong to a finite number of chemical species, with all members
of the same species behaving identically. For instance, if a hydrogen atom can have an
electron in any type of orbit around its nucleus, one would expect infinitely many different
types of hydrogen atom, corresponding to the infinitely many different possible orbits, and
one would expect the atoms to have different physical and chemical properties, depending
on the details of the orbit.

In 1913 Niels Bohr observed that these problems could be resolved in a way consistent
with Planck’s and Einstein’s earlier postulates, if we suppose that the electron orbits of
hydrogen atoms are quantised so that the orbital angular momentum takes one of a discrete
set of values

L = n~ with n ∈ N, n > 0. (1.16)

As a consequence of the angular momentum quantisation, if we take an electron e moving
with velocity v in a circular orbit of radius r about a proton, F = mea gives us that the
Coulomb force:

FCoulomb =
e2

4πε0

1

r2
= me

v2

r
. (1.17)

In a circular motion, the angular momentum is given by

L = mevr, (1.18)

but, because of Eq. (1.16), we can derive

v ≡ vn =
n~
mer

. (1.19)

3Physics teaches us that any charged particle travelling in curved paths emits the so-called synchrotron
radiation, thus it loses energies.
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Plugging it into Eq. (1.17) and solving for r, we find

r ≡ rn = n2

(
4πε0
mee2

~2

)
≡ n2a0, (1.20)

where

a0 =
4πε0~2

mee2
∼ 0.53−10m (1.21)

is the Bohr radius. So, as a result of the quantisation of the angular momentum, also the
radius and the velocity of the electrons, thus their energy in each orbit are quantised. The
energy is given by

En =
1

2
mev

2
n −

e2

4πε0

1

rn
= − e2

8πε0a0

1

n2
= − e4me

32π2ε20~2

1

n2
≡ E1

n2
, (1.22)

where E1 = −(e4me)/(32π2ε20~2) ∼ −13.6 eV. Thus we have n = 1 with energy E = E1

defining the lowest possible energy state, or ground state, of the Bohr atom. The higher
energy excited states, so called because they can be created by “exciting” the ground state
atom with radiation, correspond to n > 1. These can decay to the ground state: the
ground state has no lower energy state to decay to, and so is stable. (The Bohr model does
not allow a state with zero orbital angular momentum, which would correspond to n = 0,
r = 0 and E = −∞.)

Figure 1.5: Transition between energy levels in the Bohr atomic model. Licensed under
Creative Commons

The energy emitted for a transition from the m-th to the n-th Bohr orbital is Emn =
Em − En, see Fig. 1.5 for a schematic illustration. Using Emn = ~ωmn, where ωmn is the
angular frequency of the emitted photon, we have

ωmn = 2πcR0

(
1

n2
− 1

m2

)
, (1.23)
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where

R0 =
mec

2~

(
e2

4πε0~c

)2

(1.24)

agrees well with the experimentally determined values of the Rydberg constant.

Bohr made great use of the notion that the quantum theory that he had developed should
merge into classical theory in the limit in which classical theory was known to apply. This
idea was formulate as correspondence principle. Technically it stated that the classical limit
should be reached when the quantum numbers are large, for example, in the atomic model,
for n→∞. To illustrate it better, consider the frequency emitted when an electron makes
a ”jump” from the orbit with a quantum number n+ 1 to the orbit with quantum number
n, where n is very large. This is a good domain to ask for classical limit as the angular
momentum ~n is indeed much larger than ~. Classically, an electron moving in a circular
orbit with velocity v would be expected to radiate with the frequency of its motion; that
is

νcl =
v

2πr
=
n~
me

(
m2
ee

2

8π2ε0~2n2

)2

=
m3
ee

4

64π4ε20~3

1

n3
. (1.25)

On the other hand, the frequency of the radiation associated with the transition is, accord-
ing to Eq. (1.23),

ν =
ω

2π
=

m3
ee

4

128π4ε20~3

(
1

n2
− 1

(n+ 1)2

)
, (1.26)

which approaches νcl for n � 1. This is a significant result, since it is only the frequency
associated with a n+1→ n transition that corresponds to the fundamental classical theory.
The radiation associated with the n+2→ n transition does not have classical counterparts
even in the large n limit. Indeed, there are no n+ 2→ n transitions for circular orbits in
quantum mechanics, as we shall see in Chapt. 5.

Bohr’s model of the atom was rather more successful than its predecessors. It predicts the
energy levels of the hydrogen atom and the spectrum of photons emitted and absorbed.
It also accounted for spectroscopic data for ionised helium (He+) and for some emission
and absorption spectra for other atoms. However, as Bohr himself stressed, the model
offered no explanation of atomic physics. For example, as Rutherford commented, it’s quite
mysterious that an electron which jumps from the m-th to the n-th orbit seems to know in
advance what frequency to radiate at during the transition. Moreover, the Bohr model is
quite wrong about the details of electron orbits, even for the hydrogen atom. Nonetheless,
it was an important stepping stone on the path to quantum mechanics, suggesting some
link between Planck’s constant, atomic spectra and atomic structure, and the quantisation
of angular momentum and other dynamical quantities.
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1.4 The wave-like behaviour of particles

After the interpretation of the photoelectric effect and of the Compton scattering, light,
that even since Maxwell had been understood to be a wave of electric and magnetic fields,
was also manifested in a particle, the photon. As a result, a question arose quite naturally:
is it possible that something like the electron, that had always been regarded as a particle,
could also be manifested as some sort of wave? This was suggested in 1923 by Louis
de Broglie, a doctoral student in Paris. Any kind of wave of angular frequency ω and
wave number k has a spacetime dependence exp(ik · x− iωt). Lorentz invariance requires
that (ω,k) transforms as a four-vector, just like the momentum four-vector (E,p). For
light, according to Einstein, the energy of a photon is E = ~ω and its momentum has a
magnitude |p| = E/c = hν/c = |k|, so de Broglie was led to suggest that in general a
particle of any mass is associated with a wave having the four-vector (ω,k) equal to 1/~
times the four-vector (E,p):

ω =
E

~
k =

p

~
. (1.27)

Just as vibrational waves on a violin string are quantised by the condition that, since the
string is clamped at both ends, it must contain an integer number of half-wavelengths,
so an important consequence of de Broglie’s hypothesis is that the wave associated with
an electron in a circular orbit of radius r must have a wavelength that just fits into the
orbit a whole number n of times, so 2πr = nλ, and therefore p = ~k = ~ × 2π/λ =
n~/r, thus the quantisation of the angular momentum In a sense, De Broglie’s hypothesis,
although a posteriori, made the orbital angular momentum L = rp = n~. somewhat less
mysterious.

If electrons really are waves, then they should exhibit the usual behaviour of waves, such
as diffraction and interference. In the late 19th century double-slit experiments had been
carried out with many different sources of light. At different points constructive inter-
ference or destructive interference were observed. The same experiment was repeated on
electrons. Not only this experiment allowed scientists to verify whether electrons were
actually behaving like waves. They could also figure out the electron’s wavelength λ by
means of an experiment. Practically, the actual experiment for electrons is slightly more
complicated. Since the wavelength of an electron is rather small, to obtain the diffraction
pattern, it was not enough to poke holes in sheets. Instead, crystals had to be used as
diffraction grating. Basically, when waves are scattered by a period structure, there will
be a phase difference between waves coming from adjacent scattering planes. The phase
difference is given by (2π/λ)2a sin θ, and there will be constructive interference whenever
the phase difference is equal to 2πn, with n an integer. The results nλ = 2a sin θ is called
the Bragg condition, because it was discovered by W. L. Bragg in connection with his work
on the scattering of X rays by crystals. These experiments carried out on electron beams
showed that electrons do diffract, and their wavelength is exactly the de Broglie wave-
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length. This was first confirmed in 1923-7 by Davisson and Germer and independently

Figure 1.6: Double slit diffraction pattern for neutron with wavelength λ ∼ 18.5 A. From
A. Zeiliger, Rev. Mod. Phys. 71:S288 (1999)

in 1927 by G.P. Thomson, who observed diffractive scattering of electrons from metallic
crystals, with diffraction patterns consistent with the de Broglie wavelength λ = 2π~/p
4. The interference pattern observed in electron scattering could be correlated with the
Bragg condition, provided the De Broglie relation. This constituted a major development
in quantum mechanics. Many diffraction experiments with electrons, neutrons and other
particles have since been carried out, all confirming de Broglie’s prediction. A particularly
interesting experiment was carried out by A. Zeiliger and collaborators with slow neutrons
and with molecular beams of hydrogen and helium, see Fig. 1.6 for the clear diffractive
pattern that was observed.

These experiments also have a conceptual importance. For regular waves, diffraction is
something we can make sense of. However, here we are talking about electrons. We know
that if we fire many many electrons, the distribution will follow the pattern described
above. But what if we just fire a single electron? On average, it should still follow the
distribution. However, for this individual electron, we cannot know where it will actually
land. We can only provide a probability distribution of where it will end up. In quantum
mechanics, everything is inherently probabilistic. In this respect, quantum mechanics is
vastly different from classical mechanics.

4G.P. Thomson was the son of J.J. Thomson, who in 1897 discovered the electron, in experiments in
which it behaves as (and so was then understood to be) a particle. It is a pleasing historical quirk that
G.P. Thomson was the co-discoverer of the wave-like behaviour of electrons in diffraction experiments.
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1.5 Conclusions

As we have seen in this short historical introduction, quantum mechanics introduces a
completely novel point of view in the way we see Nature. In particular it recasts the
concepts of predictivity and reality. Indeed, one of the principles of quantum mechanics
is that physics cannot, in general, predict future events, rather it can only estimate the
probability for them to happen. On the other hand, as we have mentioned talking about
electron diffraction and as we will understand more in depth in the course of these lectures,
quantum mechanics is incompatible with the principle of local realism, i.e. with the idea
that the results of experimental measurements are the manifestation of intrinsic features
of the measured objects themselves before being measured.

The underlying idea of a fundamental physics theory is also radically transformed. Un-
avoidably, the new concepts of quantum mechanics overcome a mechanical reductionism
that led Maxwell to hope that – analogously to thermodynamics that can be reduced to
statistical mechanics – electromagnetism could also be reduced to classical mechanics. The
hypothesis that, thanks to some universal principles, the whole realm of physics can be
reduced to the principles of classical mechanics is incompatible with quantum mechanics.
Rather, quantum mechanics does not provide a new universal theory, it rather provides a
new universal framework, i.e. a set of principles that any theory must satisfy.

One of the reasons why quantum mechanics is considered incomprehensible (so much so
that Feynman observed “I think I can safely say that nobody really understands quantum
mechanics”) is that for some time people tried in vain to understand it in terms of classical
concepts, rather than realise that the new quantum framework cannot be re-conduced to
any of the classical concepts. For example, some textbooks summarise what we described
in this chapter by saying that electrons (photons, etc.) exhibit something called “wave-
particle duality”. This term can mislead, if it is interpreted as a sort of explanation of
what is going on. The fact is that our classical wave and particle models are fundamentally
inadequate descriptions. It isn’t correct to say that an electron (or photon, etc.) is both a
wave and a particle in the classical sense of either of those words. The electron is something
different again, though it has some features in common with both. To grasp the depth of
nature, we need a new grammar to scribe it, the grammar of quantum mechanics, which
you will become more familiar with by the end of the course.
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Chapter 2

Foundations of quantum
mechanics

In this section, starting from the motion of a non-relativistic particle in a continuous
coordinate space, we will introduce the basic postulates and the basic formalism of quantum
mechanics. Although ultimately only a non-relativistic part of a bigger theory, quantum
mechanics already teaches us that our universe follows laws that involve beautiful and
intricate mathematics.

To lay the mathematical foundation of quantum mechanics, let us look at a single particle
and ask “how do we describe its dynamics in quantum mechanics?”. In answering this
question, we will discover that linear algebra is the mathematical language of quantum
mechanics, although the vector space under consideration is an infinite-dimensional one
that you are not immediately familiar with.

2.1 Wavefunctions and probabilistic interpretation

Classically, a point particle has a definitive position x (and momentum p = mẋ) at each
time. To completely specify a particle, it suffices to write down these two vectors. In
quantum mechanics, this is more complicated.

In quantum mechanics, a particle is described by a state ψ. The state of a particle is
determined by its wavefunction ψ(x, t). From the mathematical point of view, quantum
states satisfy the defining conditions for abstract vectors, and, as we will see, operators act
on them as linear transformations. In an n-dimensional space we represent a vector v by
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the n-tuple if its components {vn} with respect to a specified orthonormal basis

v → v =


v1

v2
...
vn

 . (2.1)

But the ”vectors” we encounter in quantum mechanics are functions, and they live in
infinite-dimensional space. Note that the notion of the state ψ as an individual entity, is
not to be conflated with the notion of wavefunction ψ(x, t). In quantum mechanics, ψ(x, t)
is actually the complex coefficient of the state in the continuous and complete basis of x,
exactly like the component {vn} represent the vector v in a specific basis. In other words,
we say that ψ(x, t) is the state ψ expressed in the x representation. We could also represent
the state ψ in the p momentum representation or in other representations. As far as IB
Quantum Mechanics is concerned we will always work in the x representation, therefore
the concept of state and wavefunction can be safely identified. 1.

Definition: The wavefunction ψ(x, t) is a complex-valued function

ψ : R3 → C, (2.2)

that satisfies a number of mathematical property, as we shall see very shortly. As we will
see, if you know the wavefunction at some time, say t0, then you have all the information
that you need to determine the state at all other times. The description in terms of
the wavefunction is not a small amendment to classical mechanics. The three position
coordinates x ∈ R3 are replaced with an infinite amount of information. Moreover, we
haven’t specified anything about the particle’s velocity; that information must also be
contained, in some manner, in the wavefunction ψ(x, t).

The wavefunction has a very simple interpretation. Or, more precisely, the modulus square
of the wavefunction has a very simple interpretation. It tells us the probability that we
will find a particle at a given position. The probability density ρ for a particle to sit at
point x at a given time t is given by

ρ(x, t) = |ψ(x, t)|2, (2.3)

and from the probability density, you can compute actual probabilities by multiplying by
a volume: the probability that the particle sits in some small volume dV centred around
point x is ρ(x, t)dV . This is knows as Born’s rule.

1In Part II Principles of Quantum Mechanics you will reformulate QM in a more powerful, abstract and
flexible formalism, the Dirac formalism, which clarifies the concept of states and of their representation in
different bases.
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The probabilistic interpretation dictates the mathematical properties of wavefunction. The
particle has to be somewhere, and this translates to the requirement that the wavefunction
has to be normalisable (or square integrable) over all space R3∫

R3

ψ∗(x, t)ψ(x, t)dV =

∫
R3

|ψ(x, t)|2 dV = N <∞, (2.4)

with N 6= 0, because the null state is not a state of a physical system. Given that the total
probability has be one, we can always define normalised wavefunction as

ψ̄(x, t) =
1√
N
ψ(x, t), (2.5)

so that ∫
R3

|ψ̄(x, t)|2 dV = 1. (2.6)

This means that

ρ(x, t) = |ψ̄(x, t)|2 ∈ R, (2.7)

is a probability density function in the usual sense.

From now on, we will drop bars to denote normalised wavefunctions, as it will be clear from
the context whether wavefunctions are normalised or not. Quite often in these lectures, it
will turn out the be useful to work with un-normalised wavefunctions and then remember
to include the normalisation factor only at the end when computing probabilities.

There is one other relation between wavefunctions that is important: two wavefunctions
that differ by a constant, complex phase should actually be viewed as describing equivalent
states

ψ(x, t) ≡ eiαψ(x, t) (2.8)

for any constant α ∈ R. Note, in particular, that this doesn’t change the probability distri-
bution |ψ|2. Nor, it will turn out, does it change anything else either2. Combining the need
for normalisation, together with the phase ambiguity, is sometimes useful think of states
as the collection of normalisable, complex functions with the equivalence relation

ψ(x, t) = λψ(x, t) (2.9)

for any non-zero complex number λ. A more precise statement is that states correspond to
rays in the vector space of the wavefunctions. A ray, [ψ], is an equivalence class of a vector
ψ under the equivalence relation ψ1 ∼ ψ2 ⇔ ψ1 = λψ2 for some λ ∈ C− {0}.

2The “anything else” argument is important here. As we’ll see later, if you multiplied the wavefunction
by a spatially varying phase eiα(x) then it doesn’t change the probability distribution but it does change
other observable quantities and so multiplying by such a factor does not give back the same state.
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2.2 Hilbert space

The set of wavefunctions forms a vector space, just as the set of n-dimensional complex
vectors v forms the vector space Cn.

Definition: The set of all square-integrable functions in R3 is called L2(R3) by mathe-
maticians, Hilbert space by physicists. In quantum mechanics, wavefunctions live in Hilbert
space H.

This is intrinsically related to the fact that if ψ1 and ψ2 correspond to allowed states of
the system, then so does the state ψ, which is defined as

ψ = a1ψ1 + a2ψ2 6= 0 (2.10)

for arbitrary complex numbers a1 and a2. This is known as the superposition princi-
ple.

The superposition principle is an essential feature of quantum mechanics, which does not
generally apply in classical physics. It makes no sense in Newtonian mechanics to add a
linear combination of two orbits of a planet around the Sun: this doesn’t define another
possible orbit. But in quantum theory, taking sums of physical wavefunctions, for example
those of an electron orbiting the nucleus of a hydrogen atom, gives us another wavefunction
that has a direct physical meaning.

As we have just mentioned, to obtain a sensible probability distribution and make physical
predictions, we need to normalise a wavefunction. So to make physical predictions from a
superposition, we generally need to normalise ψ(x, t).

Theorem 2.1: If ψ1(x, t) and ψ2(x, t) are both normalisable,∫
R3

|ψ1(x, t)|2 dV = N1 <∞,
∫
R3

|ψ2(x, t)|2 dV = N2 <∞. (2.11)

then their linear combination is also normalisable.

Proof: For any two complex number z1 and z2, the triangle inequality states that

|z1 + z2| ≤ |z1|+ |z2|, (2.12)

and

(|z1| − |z2|)2 ≥ 0⇒ 2|z1||z2| ≤ |z1|2 + |z2|2. (2.13)
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If we apply these relations for z1 = a1ψ1 and z2 = a2ψ2, we get∫
R3

|ψ(x, t)|2dV =

∫
R3

|a1ψ1(x, t) + a2ψ2(x, t)|2 dV

≤
∫
R3

(|a1ψ1(x, t)|+ |a2ψ2(x, t)|)2 dV

=

∫
R3

(|a1ψ1(x, t)|2 + |a2ψ2(x, t)|2 + 2|a1ψ1(x, t)||a2ψ2(x, t)|) dV

≤
∫
R3

(2|a1ψ1(x, t)|2 + 2|a2ψ2(x, t)|2) dV

= 2|a1|2N1 + 2|a2|2N2 <∞. � (2.14)

2.3 Inner product

We can naturally define an inner product on this vector space, in analogy with the finite-
dimensional case. In linear algebra, you learn that the inner product (v, w) of two vectors
(generalising the dot product in three dimensions) is the complex number

(v, w) = v∗1w1 + v∗2w2 + · · ·+ v∗nwn. (2.15)

Definition: In quantum mechanics, the inner product of two wavefunctions ψ(x, t) and
φ(x, t) at a time t is given by

(ψ, φ) ≡
∫
R3

ψ∗(x, t)φ(x, t) dV. (2.16)

Theorem 2.2: If ψ and φ are both square-integrable (that is they are both in Hilbert
space), their inner product is guaranteed to exist, i.e. the integral above converges to a
finite number.

Proof: Let us take ψ(x, t) and φ(x, t). From the integral Schwartz inequality, we
have ∣∣∣∣∣

∫
R3

ψ∗(x, t)φ(x, t) dV

∣∣∣∣∣ ≤
√∫

R3

|ψ(x, t)|2 dV
∫
R3

|φ(x, t)|2 dV . (2.17)

Therefore, if both terms on the right-hand side of the above equation are finite, then also
the inner product is finite. �

Without giving any proof for this, we can extend the definition of the inner product ( , )
to any ψ and φ for which the integral in Eq. (2.16) is well-defined, whether or not ψ or φ
are normalisable.

You can now check that Eq. (2.16) satisfies all conditions for an inner product. In partic-
ular
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1. (ψ, φ) = (φ, ψ)∗.

2. The inner product is anti-linear in the first entry and linear in the second:

(a1ψ1 + a2ψ2, φ) = a∗1(ψ1, φ) + a∗2(ψ2, φ)

(ψ, a1φ1 + a2φ2) = a1(ψ, φ1) + a2(ψ, φ2)

3. The inner product of ψ with itself

(ψ,ψ) =

∫
R3

|ψ(x, t)|2 dV,

is real and non-negative and, for continuous functions, it is zero only when ψ = 0,
which is a not an admissible physical state.

Now, using the definition of inner product, we can define (or redefine) a series of important
properties of wavefunctions:

Definition: The norm of a wavefunction is the squared root of the inner product of the
wavefunction with itself ||ψ|| =

√
(ψ,ψ).

Definition: A wavefunction ψ is called normalised if ||ψ|| = 1.

Definition: Two wavefunctions ψ, φ are orthogonal is their inner product (ψ, φ) is zero.

Definition: A set of wavefunctions {ψn} is orthonormal is they are normalised and mu-
tually orthogonal:

(ψm, ψn) = δmn.

Definition A set of wavefunctions {ψn} is complete if any other wavefunction in Hilbert
space can be expressed as a linear combination of them:

φ =
∞∑
n=0

cnψn. (2.18)

Lemma 2.3: If the wavefunctions {ψn} that form a complete set are also an orthonormal
set, the coefficients are given by the Fourier’s trick:

cn = (ψn, φ). (2.19)

Proof:

(ψn, φ) = (ψn ,
∞∑
m=0

cmψm)

=

∞∑
m=0

cm(ψn, ψm) =

∞∑
m=0

cm δmn = cn, (2.20)

where in the second line we used the linearity of the inner product in the second entry.
�
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2.4 Time-dependent Schrödinger equation (TDSE)

The wavefunction gives us a description of the state of the system. The next step is to
understand how these states evolve in time. The time evolution of wavefunction ψ(x, t) is
governed by the time-dependent Schrödinger equation. For a non-relativistic particle of
mass m moving in a potential U(x), this reads

i~
∂ψ

∂t
(x, t) = − ~2

2m
∇2ψ(x, t) + U(x)ψ(x, t) (2.21)

Note that, being a first order equation in t, ψ(x, t) is uniquely determined by Eq. (2.21)
and the initial value ψ(x, 0). On the other hand Eq. (2.21) is a second order differential
equation in x. The asymmetry between x and t is intrinsically related to the fact that
the TDSE is a non-relativistic equation. Eq. (2.21) is a postulate of quantum mechanics.
If you want a heuristic justification in 1D, recall that de Broglie postulated that particles
are described by waves, and that the energy and momentum are related to the angular
frequency and wave vector by E = ~ω and p = ~k. We can express this by associating to a
particle of energy E and momentum p a wave of the form (called the de Broglie wave)

ψ(x, t) = exp [i(kx− ωt)] = exp

[
i

~

(
px− p2

2m
t

)]
(2.22)

The simplest wave equation to which the above wave is the general solution is the time-
dependent 1D Schrödinger equation (2.21) for a free particle, i.e. for U(x) = 0. We will see
in Sect. 3.2 that the De Broglie wave is non-normalisable, and thus cannot be an acceptable
solution of the Schrödinger equation. We will thus introduce the concept of wave package
to achieve a correct solution of the free particle problem.

Let’s return to the statistical interpretation of the wavefunction, of Eq. (2.6). This might
seem in apparent contradiction with the Schrödinger equation. After all, the wavefunction
is supposed to be determined by the Schrödinger equation, so we cannot impose an external
condition on ψ(x, t) without checking that the two are consistent. Suppose that we have
normalised the wavefunction at time t = 0. How do we know that the wavefunction will
stay normalisable as time goes? Fortunately, the Schrödinger equation has the remarkable
property that it automatically preserves the normalisation of the wavefunction. Without
this crucial feature, Eq. (2.6) and Eq. (2.21) would be mutually incompatible, as probability
would not be conserved in time. This point is important and it deserves a careful proof.
To begin with

d

dt

∫
R3

|ψ(x, t)|2 dV =

∫
R3

∂

∂t
|ψ(x, t)|2 dV. (2.23)

By the product rule,
∂

∂t
|ψ|2 =

∂

∂t
(ψ∗ψ) = ψ∗

∂ψ

∂t
+ ψ

∂ψ∗

∂t
. (2.24)
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Because of the TDSE, Eq. (2.21), we have

∂

∂t
ψ =

i~
2m
∇2ψ − i

~
Uψ (2.25)

and
∂

∂t
ψ∗ = − i~

2m
∇2ψ∗ +

i

~
Uψ∗, (2.26)

so
∂

∂t
|ψ|2 =

i~
2m

(
ψ∗∇2ψ − ψ∇2ψ∗

)
= ∇ ·

[
i~
2m

(ψ∗∇ψ − ψ∇ψ∗)
]
. (2.27)

The integral in Eq. (2.23) can now be evaluated explicitly and gives

i~
2m

(ψ∗∇ψ − ψ∇ψ∗)

∣∣∣∣∣
δV

= 0, (2.28)

given that ψ(x, t) must be zero at the boundaries δV , i.e. at |x| → ∞.
Hence a wavefunction’s normalisation is constant and the probability conservation holds

∂

∂t
ρ(x, t) +∇ · j(x, t) = 0, (2.29)

where

j(x, t) = − i~
2m

(ψ∗(x, t)∇ψ(x, t)− ψ(x, t)∇ψ∗(x, t)) (2.30)

is the conserved probability current of the physics states that obey the Schrödinger equa-
tion.

2.5 Measurements in Quantum Mechanics

In Sect. 2.1 we have seen that the modulus square of the wavefunction gives the probability
distribution of the position of the particle. How about other information such as a particle’s
momentum or energy? It turns out that all the information about the particle is contained
in the wavefunction (which is why we call it the “state” of the particle). We call observable
each property of the particle which we can measure. Each observable is represented by
an operator acting on the state ψ. Each measurement is represented by an expectation
value.

2.5.1 An heuristic explanation

In this section we start by giving an heuristic explanation that introduces the concept of
measurements continuing along the lines of the probabilistic interpretation of the wavefunc-
tion. Afterwards we provide a more mathematical definition by introducing the concepts
of operators and expectation values.
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Given the probabilistic interpretation of the wavefunction provided by the Born’s rule, for
a particle in state ψ, the expectation value of x (for simplicity let’s keep working in one
dimension) is given by

〈x〉 =

∫ +∞

−∞
x|ψ(x, t)|2 dx, (2.31)

where ψ(x, t) is the normalised wavefunction. The above equation is nothing but the value
of the position x weighted over the probability density in the x−space |ψ|2 of the particle
associate to the state ψ. What exactly does this mean? It does not mean that if you
measure the position of one particle over and over again, 〈x〉 is the average result you
will get. On the contrary: the first measurement (whose outcome is not determinate)
will collapse the wavefunction to a spike at the value actually obtained and the subsequent
measurements will simply give the same result. Rather, 〈x〉 is the average of measurements
performed on particles all in the same state ψ. Basically you prepare a whole ensemble
of particle, each in the same state ψ, and measure the position of all of them: 〈x〉 is the
average of these results. To summarise, the expectation value is the average of repeated
measurements on an ensemble of identically prepared systems, not the average of repeated
measurements on the same system.

Now, as time goes on, 〈x〉 will change (because of the time-dependence of ψ(x, t)) and we
might be interested in knowing what is the momentum of the particle. In our heuristic
explanation we start from what we are familiar with and define the momentum as the mass
times velocity, i.e. as the mass times the derivative of the position. This way we get

〈p〉 = m
d〈x〉
dt

= m
d

dt

∫ +∞

−∞
x|ψ(x, t)|2 dx = m

∫ +∞

−∞
x
∂

∂t
(ψ∗(x, t)ψ(x, t)) dx

=
i~
2

∫ +∞

−∞
x
∂

∂x

(
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

)
dx, (2.32)

where in the last passage we have used the T.D.S.E. for a free particle and its complex
conjugate version. The above expression can be further simplified using integration-by-
parts and throwing away the boundary terms (on the grounds that ψ̄ must go to zero at
±∞ faster than 1/x) and we obtain the expectation value for the momentum p

〈p〉 =
−i~

2

∫ +∞

−∞

(
ψ∗(x, t)

∂ψ(x, t)

∂x
− ψ(x, t)

∂ψ∗(x, t)

∂x

)
dx

= −i~
∫ +∞

−∞
ψ∗(x, t)

∂ψ(x, t)

∂x
dx, (2.33)

where in the last passage we performed a further integration by part. The expressions for
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the expectation values 〈x〉 and 〈p〉 can be written as

〈x〉 =

∫ +∞

−∞
ψ∗(x, t)xψ(x, t) dx, (2.34)

〈p〉 =

∫ +∞

−∞
ψ∗(x, t)

(
−i~ ∂

∂x

)
ψ(x, t) dx. (2.35)

We now say that the operator x̂ = x represents the position of a particle and that the
operator p̂ = −i~∂/∂x represents the momentum of a particle (both in the x−space repre-
sentation).

In general, to calculate the expectation value of any quantity Q(x, p), we simply replace p
by (−i~∂/∂x) and insert the resulting operator between ψ∗ and ψ and integrate over the
whole space

〈Q(x,p)〉 =

∫
R3

ψ∗Q (x,−i~∇)ψ dV (2.36)

The above equation is a recipe for computing the expectation values of any dynamical
quantities, for a particle in state ψ. It might be useful that the quantity Q(x, p) should
have an implicit ordering associated with it, otherwise you can get different operators for
the same classical quantities. For example Q(x, p) = xp and Q(x, p) = px give rise to
different operators, even though they are the same as classical quantities. Fixing an order
(e.g. saying all x’s occur before all p’s) sorts out the problem.

In the next two sections we will give a more mathematical definition of operators and
expectation values.

2.5.2 Hermitian operators

After a somewhat heuristic explanation (that physicists usually like) we now give a more
rigorous definition of operators and expectation values. To do that, we continue the analogy
with linear algebra.

It is well-known that in a n-dimensional complex space linear transformations T are rep-
resented by matrices (with respect to the specific basis), which act on vectors (to produce
new vectors) by the ordinary rules of matrix multiplication.

w = Tv → w = Tv =


t11 t12 . . . t1n
t21 t22 . . . t2n
...

...
...

tn1 tn2 . . . tnn



v1

v2
...
vn

 (2.37)

In quantum mechanics, linear transformations are represented by linear operators Ô, which
act on wavefunctions to produce new wavefunctions of the Hilbert space H.
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Definition: We define an operator Ô to be any linear map from the Hilbert space to itself
i.e. any map such that

Ô(a1ψ1 + a2ψ2) = a1Ôψ1 + a2Ôψ2, (2.38)

for all complex numbers a1, a2 and all ψ1, ψ2 ∈ H3.
To simplify the notation, without any loss of generality, we give examples of linear operators
in 1D, such as

• Finite differential operators
N∑
n=0

pn(x)
∂n

∂xn

where the pn(x) are polynomials. in x. Note that this class includes the p̂ and x̂.

• the translation operators

Sa : ψ(x) → ψ(x− a)

• the parity operator

P : ψ(x) → ψ(−x)

There is a special class of operators in quantum mechanics , the Hermitian operators. They
are special because physical observables are not associated to any operators, rather they
are associated to Hermitian operators.

Definition: We define the Hermitian conjugate Â† of an operator Â to be the operator
such that

(Â†ψ1, ψ2) = (ψ1, Âψ2) (2.39)

for all normalisable wavefunctions ψ1, ψ2 ∈ H.

Exercise: Verify the following properties of Hermitian conjugation

1. (a1Â1 + a2Â2)† = a∗1Â
†
1 + a∗2Â

†
2

2. (ÂB̂)† = B̂† Â†

Definition: An operator is Hermitian if

Â = Â†. (2.40)

3Sometimes it is also useful to expand the definition to include anti-linear operators (specifically in the
case of time-reversal symmetry).
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All quantum dynamical variables or observables (i.e. all quantities that we can measure)
are represented by Hermitian operators, and viceversa. Examples of operators defining
quantum observables such as the position, momentum and energy operators, are defined
(in 1D) as:

• position

x̂ : ψ(x, t) → xψ(x, t), (2.41)

• momentum

p̂ : ψ(x, t) → −i~∂ψ(x, t)

∂x
. (2.42)

• kinetic energy

T̂ : ψ(x, t)→ p̂2

2m
ψ(x, t) = − ~2

2m

∂2ψ(x, t)

∂x2
, (2.43)

• potential energy

Û : ψ(x, t)→ U(x̂)ψ(x, t) = U(x)ψ(x, t) (2.44)

• total energy, sum of the kinetic and the potential energies

Ĥ : ψ → − ~2

2m

∂2

∂x2
ψ(x, t) + U(x)ψ(x, t). (2.45)

Exercise: Verify explicitly that all the above operators are Hermitian, i. e. that (x̂ψ, φ) =
(ψ, x̂φ), (p̂ψ, φ) = (ψ, p̂φ) and (Ĥψ, φ) = (ψ, Ĥφ) for all ψ, φ ∈ H.

We will now describe several crucial properties of Hermitian operators.

Theorem 2.4: The eigenvalues of a Hermitian operator are real.

Proof: Let Â be Hermitian and ψ be a normalised eigenfunction with eigenvalue a:
Âψ = aψ. We have

(ψ, Âψ) = (ψ, aψ) = a(ψ,ψ) = a,

(ψ, Âψ) = (Â†ψ,ψ) = (Âψ, ψ)

= (aψ, ψ) = a∗(ψ,ψ) = a∗. (2.46)

Hence a∗ = a, so the eigenvalues of a Hermitian operator are real. �

Theorem 2.5: Let Â be a Hermitian operator and ψ1, ψ2 be normalised eigenfunctions
with different eigenvalues a1, a2. Then ψ1 and ψ2 are orthogonal.
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Proof: We have Âψ1 = a1ψ1 and Âψ2 = a2ψ2, and by the theorem above we have
that a1, a2 are real.

a1(ψ1, ψ2) = a∗1(ψ1, ψ2) = (a1ψ1, ψ2)

= (Âψ1, ψ2) = (Â†ψ1, ψ2)

= (ψ1, Âψ2) = (ψ1, a2ψ2) = a2(ψ1, ψ2) (2.47)

Hence (a1−a2)(ψ1, ψ2). But since a1 6= a2, then (ψ1, ψ2) = 0, i.e. ψ1 and ψ2 are orthogonal.
�

Our discussion is complicated by the fact that the eigenfunctions of Hermitian operators
(i.e. of quantum observables) are not necessarily all normalisable. For example the position
operator x̂ has normalisable eigenfunctions δ(x− q), with eigenvalue q

x̂δ(x− q) = xδ(x− q) = qδ(x− q). (2.48)

However they do not exist in the space of wavefunctions (since they are generalised func-
tions, i.e. distributions, rather than true functions). On the other hand the momentum
operator p̂ = −i~∂/∂x has eigenfunctions exp(ipx/~) with eigenvalue p

p̂ e
ipx
~ = p e

ipx
~ , (2.49)

which however are not normalisable.

In Chapt. 3 we will see that the Hamiltonian, i.e. the energy operator, has normalis-
able eigenfunctions for all systems corresponding to bound states and not normalisable
eigenfunctions for all systems corresponding to unbound states or scattering solutions. In
general, a Hermitian operator may have both a set of normalisable eigenfunctions with dis-
crete eigenvalues and a set of non-normalisable eigenfunctions with continuous eigenvalues,
and the theorems stated in this section apply to both sets4.

Theorem 2.6: The discrete and continuous sets of eigenfunctions of any Hermitian oper-
ator together form a complete orthogonal basis of the physical wavefunctions, i.e. of the
normalisable complex-valued wavefunctions ψ(x)5.

Note that we say the Hermitian operator Â has a degenerate eigenvalue λ if it has more than
one linearly independent eigenfunction with eigenvalue λ. If Â has degenerate eigenvalues,

4*Non-examinable technical note: it is well beyond our scope here but, in fact, it turns out one can
find a more general notion of normalisability which covers both sets of eigenfunctions, and more general
versions of the theorems can be precisely framed in terms of this condition. This definition includes bound
states and scattering solutions to the time-independent SE, but not solutions which blow up exponentially.
A discussion can be found in, for example, Messiah, “Quantum Mechanics”, vol. 1, chap V.9.*

5This theorem is quite hard to prove in complete generality. We will assume it without proof in this
course.
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we define an orthogonal basis of its eigenfunctions by choosing orthogonal bases for the
eigenfunctions associated with each degenerate eigenvalue λ.
In Sect. 2.6 we will see that, if we apply Theorem 2.6 to a very special Hermitian operator,
the Hamiltonian Ĥ, we obtain the important corollary, that links the solutions of the TDSE
to the eigenfunctions of Ĥ.

2.5.3 Expectation values and measurements

So far we have seen that every quantum observableO is represented by a Hermitian operator
Ô. Here we list a series of other important postulates of quantum mechanics that link the
outcome of measurements to the e-values of the operators.

i) The possible outcomes of a measurement of O are the eigenvalues of Ô.

ii) If Ô has a discrete (either finite or infinite) set of normalised eigenfunctions {ψi}
with corresponding distinct eigenvalues {λi} , and a measurement of O is carried out
on a particle with a normalised wavefunction

ψ =
∑
i

ai ψi, (2.50)

then the probability of the outcome λi is equal to |ai|2.
Of course, if the wavefunction ψ is an eigenfunction ψi of Ô, then the measurement
outcome will be λi with probability one. For example, a stationary state obeying
Ĥψ = Eψ will always give outcome E if one measures the energy of the state.
But unless the wavefunction ψ is an eigenfunction of the measured observable, the
measurement outcome is not definitely predictable. In contrast to classical mechanics,
a quantum observable does not generally have a definite value on a quantum state.

iii) We can extend iii) to the case when Ô has degenerate eigenvalues. If O is measured on
a state ψ =

∑
aiψi, where {ψi} are orthonormal eigenfunctions of the corresponding

operator Ô and {ψi}i∈I are a complete set of orthonormal eigenfunctions with the
same eigenvalue λ, then the probability of outcome λ is

P (O = λ) =
∑
i∈I
|ai|2. (2.51)

As a sanity check, we make sure that the total probability of all possible outcomes is
one ∑

i

|ai|2 =
∑
i

(aiψi, aiψi) =
∑
i,j

(aiψi, ajψj) = (ψ,ψ) = 1, (2.52)

as it should be. As a result, the postulates are consistent: the sum of the probabilities
of all possible outcomes is 1, and so if you carry out a measurement you will certainly
get some outcome and you will only get one outcome. (We already verified this in
the case of the Born rule for the measurement of the position.)
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iv) The projection postulate: If a measurement of the observable O is carried out
on a particle with normalised wavefunction ψ(x, t) at time t and the outcome λi
is obtained, the wavefunction instantaneously after the measurement becomes ψi(x).
This is sometimes referred to as the “collapse of the wavefunction”. The wavefunction
then evolves according to the Schrödinger, with initial state ψi(x) at time t, until the
next measurement.

v) We can extend this statement to the case when Ô has degenerate eigenvalues. If
ψ =

∑
i aiψi is measured where {ψi} are orthonormal eigenfunctions of Ô and {ψi}i∈I

are a complete set of orthonormal eigenfunctions with the same eigenvalue λ, then
the state resulting after a measurement with outcome λ is given by

∑
i∈I ai ψi (up to

normalisation).

The projection postulate is so called because it implies that the post-measurement wave-
function ψi(x, t) is obtained from the pre-measurement wavefunction ψ(x, t) by the action
of the projection operator P̂i defined by

P̂i : ψ → (ψi, ψ)ψi, (2.53)

up to normalisation. We call P̂i a projection since it maps any state onto its component in
a particular linear subspace, namely the subspace spanned by ψi – an action analogous to,
for instance, the projection of a 3D vector (x, y, z) onto its x-component (x, 0, 0).

A physics implication of the projection postulate is that, if an observable O is measured
twice, with infinitesimal time separating the two measurements, then if the first outcome is
λi the second will, with probability one, also be λi. This is the reason why we stressed that
the expectation value of the position operator, 〈x〉, is to be interpreted as the average of
measurements performed on an ensemble of particles all in the same state ψ. Basically the
expectation value is the average of repeated measurements on an ensemble of identically
prepared systems, not the average of repeated measurements on the same system, otherwise
the first measurement (whose outcome is not determinate) will collapse the wavefunction
to a spike at the value actually obtained and the subsequent measurements will simply give
the same result. This has the important consequence that quantum measurements resemble
classical measurements in at least one sense: they establish a property of the system that
can be repeatedly verified. If we measure something, and then quickly measure it again,
we get the same answer. If this was not true, it would be hard to find any good reason for
the use of the term “measurement” in quantum mechanics.

We can now formulate more in depth the concept of expectation value. Consider a mea-
surement of the observable O on the state ψ. If the corresponding Hermitian operator
Ô has only a discrete set of normalisable eigenfunctions {ψi}, we have just learnt that
the possible outcomes are the corresponding eigenvalues λi, with outcome probabilities are
Pi = |(ψ,ψi)|2. The expectation value of the measured outcome, in the standard statistical
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sense of the term, is thus∑
i

Piλi =
∑
i

|(ψ,ψi)|2 λi

=

∑
i

(ψ,ψi)ψi,
∑
j

λj(ψ,ψj)ψj

 = (ψ, Ôψ) (2.54)

Thus we have

〈Ô〉ψ = (ψ, Ôψ), (2.55)

where by 〈Ô〉ψ we indicate the expectation value of a measurement of the observable O
on the state ψ. By the above definition, we can justify this definition of expectation
value for the position operator x̂, that we introduced in Sect. 2.3 from the probabilistic
interpretation. Recall that the probability of obtaining a position measurement outcome in
the infinitesimal volume dV is given by |ψ(x, t)|2dV (Born’s rule). The expectation value
of a position measurement is thus∫

R3

x|ψ(x, t)|2 dV =

∫
R3

ψ∗(x, t) x̂ψ(x, t) dV = (ψ, x̂ψ). (2.56)

This encourages us to take Eq. (2.55) as a general definition of expectation value for any
observable, whether its eigenvalues are discrete, continuous or a combination of those.

Note that the expectation value is linear with respect to real scalars i.e.

〈aÂ+ bB̂〉ψ = a〈Â〉ψ + b〈B̂〉ψ, (2.57)

for any Hermitian operators Â, B̂ and any real numbers a, b. We restrict to a, b real
here because the interpretation of 〈Â〉ψ as an expectation value of an observable requires

that Â is Hermitian, since observables are always represented by Hermitian operators. A
complex multiple of a Hermitian operator is not generally Hermitian: if Â is Hermitian
then (cÂ)† = c∗Â† = c∗Â 6= cÂ if c∗ 6= c.

To conclude, the discussion about expectation values we had allows us to give a physics
interpretation of the inner product (φ, ψ). Born’s rule: If φ(x, t) is the desired outcome of
a measurement, then the probability of measuring such an outcome given the wavefunction
ψ(x, t) at a time t is given by

|(ψ, φ)|2 =

∣∣∣∣∫
R3

ψ∗(x, t)φ(x, t) dV

∣∣∣∣2 . (2.58)

We say that (2.58) is the probability amplitude of φ to be found in ψ at time t, so in a
sense it measures the overlap of the two wavefunctions.
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2.6 Time-independent Schrödinger equation (TISE)

Les us now go back to the time-dependent Schrödinger equation (2.21). We rewrite it
explicitly in one dimension as

Ĥχ(x) = − ~2

2m
χ′′(x) + U(x)χ(x) = Eχ(x), (2.59)

with χ′′(x) ≡ d2χ/dx2. We want to find the allowed energy eigenvalues for a particle in 1D
given a potential U . If U(x) is time independent, we can then use the method of separation
of variables to find solutions, by trying the ansatz (try solution)

ψ(x, t) = χ(x)T (t). (2.60)

Plugging it into (2.59) gives

(Ĥχ(x))T (t) = χ(x)i~
∂T (t)

∂t
⇒ Ĥχ(x)

χ(x)
=

1

T (t)

(
i~
∂T (t)

∂t

)
. (2.61)

Since the left hand side depends only on x and the right hand side only on t, both must
equal a constant, which we call E. Thus we have

T (t) = exp

(
− i
~
Et

)
, (2.62)

and the time-independent Schrödinger Equation (TISE)

Ĥχ = Eχ⇔ − ~2

2m

d2

dx2
χ(x) + U(x)χ(x) = Eχ(x). (2.63)

Note that the constant E has to be real, otherwise T (t) would not be defined at all times
t. Indeed, if E = E0 + iΓ, with E0,Γ ∈ R, then

T (t) = exp

(
− i
~
E0t

)
exp

(
1

~
tΓ

)
, (2.64)

which would go to ∞ for t→∞. Hence the energy E is a real number. From Eq. (2.63),
we argue that χ(x) is an eigenfunction of the Hamiltonian operator Ĥ which corresponds
to a physical state whose energy is given by the eigenvalue E. The terminology is a natural
extension to infinite-dimensional spaces (of functions) of the definitions of eigenvector and
eigenvalue for finite-dimensional matrices.
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2.7 Stationary States

Definition: The particular class of solutions that have the form

Ψ(x, t) = χ(x) exp

(
− i
~
Et

)
, (2.65)

where χ(x) is an eigenfunction of the Hamiltonian with eigenvalue E, are called stationary
states. We will refer to χ(x) as the stationary state wavefunction. Stationary states are
states of definite energy E. For stationary states the probability density

ρ(x, t) = |Ψ(x, t)|2 = |χ(x)|2, (2.66)

is time independent, hence the name stationary state.

By applying theorem 2.6 to the Hamiltonian operator we get an important corollary.
Theorem 2.7: Every solution of the TDSE can be written as a superposition of sta-
tionary states χ(x)T (t).

For systems that have a discrete set of energy eigenfunctions

ψ(x, t) =
∞∑
n=1

anχn(x)e−iEnt/~, (2.67)

while for systems that have a continuous set of energy eigenfunctions labelled by a contin-
uous index α

ψ(x, t) =

∫
∆
A(α)χα(x)e−iEαt/~ dα. (2.68)

Because of what we said in Sect 2.5.3, the probability of measuring the particle’s energy
as En is equal to |an|2 (or to |E(α)|2dα in the case of a system with a continuous set of
eigenfunction)6.

Given that, as for Theorem 2.7, every solution of the TDSE can be written like Eq. (??),
once the eigenvalues of the Hamiltonian are found, it is only a matter of finding the right

6* In general, a discrete set of eigenvalues is associated with normalisable wavefunctions, while a contin-
uous spectrum is associated with non-normalisable wavefunctions. The former give rise to bound states, i.e.
of states in which the particle cannot be too far from the origin. How do we see that? It is quite simple, as
(take a one-dimensional state for simplicity):∫ +∞

−∞
dx |χ|2 = N < ∞ ⇒ lim

R→∞

∫
|x|>R

dx|χ(x)|2 = 0. (2.69)

Using the same kind of reasoning, we can immediately see that the above equation does not hold for non
normalisable functions, which instead are associated with scattering states, and the particle can be at ±∞
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complex constants an so as to fit the initial condition of the problem at hand. In general
ψ(x, t) is not a stationary state and thus does not have a definite energy. We can see this
explicitly. Take a state ψ, which is the superposition of two stationary states ψ1 and ψ2 with
two real coefficient of proportionality a1 and a2 and real stationary state wavefunctions
χ1(x) and χ2(x) (for simplicity). If we compute the probability density associated to this
state, we see that the it is not a constant, rather it oscillates with time. Indeed

|ψ(x, t)|2 = |a1Ψ1(x, t) + a2Ψ2(x, t)|2 (2.70)

= a2
1|χ1(x)|2 + a2

2|χ2(x)|2 + a1a2χ1(x)χ2(x)[exp(i∆Et/~) + exp(−i∆Et/~)]

= a2
1|χ1(x)|2 + a2

2|χ2(x)|2 + 2a1a2χ1(x)χ2(x) cos(∆Et/~),

with ∆E = E1 − E2.
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Chapter 3

Solutions of the Schrödinger
equation

In this chapter, we familiarise ourselves with the time-independent Schrödinger equation,
by looking at various examples of solutions of the one-dimensional (1D) Schrödinger equa-
tion for one particle. We start with a particle confined in a region in x and only then
move to solving the Schrödinger equation for a free particle, which is much trickier than
for a confined particle. We will then look at the solutions we get when a particle is in a
finite potential well, and at several cases of scattering problems, such as a potential step
and a potential barrier. We will conclude by looking into the solution of the Schrödinger
equation for a harmonic oscillator.

3.1 Bound states

In this section we explicitly calculate the eigenvalues and eigenfunctions of the Hamiltonian
for three bound quantum states, starting from the simplest case of the infinite potential
well, to the most physically interesting, the harmonic oscillator.

3.1.1 Infinite potential well

The simplest case to consider is the infinite potential square well. Here the potential is
infinite outside the region [−a, a] and the particle is free inside this region.

U(x) =

{
0 |x| ≤ a
∞ |x| > a,

(3.1)

see Fig. 3.1 for a sketch. For |x| > a, we must have χ(x) = 0, or else U(x)χ(x) would
be infinite. We require then χ(x) = 0 for |x| ≥ a and χ(x) to be continuous at x = ±a.
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Figure 3.1: The infinite square well potential.

Within x ≤ a Eq. (2.59) becomes

− ~2

2m
χ′′(x) = Eχ(x). (3.2)

We simplify this to become

χ′′(x) + k2χ(x) = 0, with k2 =
2mE

~2
. (3.3)

Given that E > 0, the general solution is the general oscillatory solution

χ(x) = A sin(kx) + B cos(kx), (3.4)

with two arbitrary complex constants A and B, which depends on the boundary conditions.
To find A and B we match solutions at the boundaries x = −a , x = a by imposing
continuity

A sin(ka) ± B cos(ka) = 0 ⇒ A sin(ka) = 0 ∧ B cos(ka) = 0 (3.5)

Since sin(ka) and cos(ka) cannot be simultaneously 0, either A = 0 or B = 0. So the two
possibilities are

1. A = 0 ⇒ χn = B cos(kx) and k = nπ/(2a), with n = 1, 3, ... (even eigenfunctions).

2. B = 0 ⇒ χn = A sin(kx) with k = nπ/(2a), with n = 2, 4, ... (odd eigenfunctions).

Hence, the allowed energy levels (i.e. the eigenvalues of the Hamiltonian) are

En =
~2π2n2

8ma2
, withn = 1, 2, 3, .. (3.6)
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Figure 3.2: Lowest energy wavefunctions of the infinite square well.

and the wavefunctions (i.e. the eigenfunctions of the Hamiltonian) are

χn(x) =

√
1

a

{
cos nπx2a n = 1, 3, ...

sin nπx
2a n = 2, 4, ...

(3.7)

where it is straightforward to verify that A = B =
√

1/a derives from the normalisation
condition ∫ a

−a
|χn(x)|2 dx = 1. (3.8)

In Fig. 3.2 we present an illustration of the lowest energy wavefunctions. Notice that, unlike
classical mechanics, the lowest energy state E1 is non-zero. The lowest energy state of any
system is called ground state or vacuum state. Wavefunctions alternate between even
(n = 1, 3, ...) and odd (n = 2, 4, ...) under reflection on the y axis. Also, the wavefunction
χn has (n + 1) zeros (or nodes) where ρn(x) = |χn(x)|2 vanishes. Finally, in the limit
n → ∞ the probability approaches a constant, which is what we would expect from the
classical result. This is yet another example of the correspondence principle.

The infinite square well was a rather simple and nice example. We have an infinite well, and
the particle is well-contained inside the box. The solutions just look like standing waves
on a string with two fixed end points — something we are familiar with. Note that

χn(−x) = (−1)n+1χn(x). (3.9)

This is actually a general feature of energy eigenfunctions of a symmetric potential. This
is known as parity.
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Figure 3.3: The finite square well.

Proposition: Suppose that the spectrum of bound states is non-degenerate

Ei 6= Ej for i 6= j. (3.10)

If U(x) = U(−x) then the eigenfunctions of the Hamiltonian must be either even or
odd.

Proof: If U(x) = U(−x), then the time-independent Schrödinger equation is reflection
invariant. Therefore if χ(x) is a solution with eigenvalue E, χ(−x) is also a solution with
the same eigenvalue. The non-degeneracy of the spectrum implies that the two solutions
must be the same up to a multiplicative factor, i.e. χ(−x) = αχ(x) for some non-zero
complex α. For consistency

χ(x) = χ(−(−x)) = αχ(−x) = α2χ(x). (3.11)

Thus α2 = 1 ⇒ α = ±1 and χ(−x) = ±χ(−x), i.e. all stationary state wavefunctions
must be either even or odd. �

3.1.2 Finite potential well

In the case of a finite potential well, shown in Fig. 3.3,

U(x) =

{
0 |x| ≤ a
U0 |x| > a,

(3.12)

the stationary states obey

− ~2

2m
χ′′(x) + U(x)χ(x) = Eχ(x). (3.13)
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Consider even-parity bound states1

χ(−x) = χ(x)

with energy E such that 0 ≤ E ≤ U0, and define the real constants

k =

√
2mE

~2
≥ 0 κ =

√
2m(U0 − E)

~2
≥ 0. (3.14)

For |x| < a, the Schrödinger equation becomes,

χ′′(x) + k2χ(x) = 0, (3.15)

and the general solution takes the oscillatory form,

χ(x) = A cos(kx) +B sin(kx). (3.16)

Imposing the even parity condition χ(−x) = χ(x), we get

B = 0 ⇒ χ(x) = A cos(kx). (3.17)

For |x| ≥ a
χ′′(x)− κ2χ(x) = 0, (3.18)

and the general solution for x > +a has the form,

χ(x) = C exp(+κx) +D exp(−κx). (3.19)

Normalisability yields C = 0 thus,

χ(x) = D exp(−κx) (3.20)

for x > +a. Similarly for x < −a (by even parity) we have,

χ(x) = D exp(+κx) (3.21)

Imposing continuity of χ(x) at x = ±a gives,

A cos(ka) = D exp(−κa) (3.22)

and continuity of χ′(x) at x = ±a gives,

−kA sin(ka) = −κD exp(−κa). (3.23)

1The odd-parity bound states can be determined in a similar way, you can do it at home as an exercise.
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Figure 3.4: Graphical solution of Eq. (3.26).

Dividing Eq. (3.23) by (3.22) yields,

k tan(ka) = κ (3.24)

From the definitions in Eq. (3.14) we find a second equation relating k and κ,

k2 + κ2 =
2mU0

~2
(3.25)

Now define rescaled variables ξ = ka and η = κa and the constant r0 = a
√

(2mU0)/~2.
Eqs. (3.24) and (3.25) become, {

ξ tan ξ = η

ξ2 + η2 = r2
0

(3.26)

It is not possible to solve these transcendental equations in closed form. Instead one
may easily establish some qualitative features of the solutions via a graphical solution as
shown in Fig. 3.4. Here the two equations are plotted in the (ξ, η)-plane. The solutions
correspond to the intersection points {ξ1, ξ2, . . . , ξp}, with p ≥ 1. We observe that the
number of solutions (i.e. the numbers of discrete eigenvalues of the Hamiltonian) increases
with the width and the depth of the well, as r0 grows. Each solution determines an energy
level via,

En =
~2ξ2

n

2ma2
withn = 1, ..., p. (3.27)

We always have at least one solution for U0 > 0. In fact it can be proved that attractive
potentials in one dimension always have at least one bound state. From the graph we see
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Figure 3.5: Ground state probability density for the finite square potential well.

that,

(n− 1)π ≤ ξn ≤
(
n− 1

2

)
π

The limit of infinite square well U0 → ∞ implies r0 → ∞ and therefore ξn → (n− 1/2)π.
The resulting energy levels are given by

En =
~2ξ2

n

2ma2
=

~2(2n− 1)2π2

8ma2
. (3.28)

This agrees with earlier result for even levels of infinite well of width 2a, Eq. (3.6). As
an exercise, you may explicitly check that wavefunction goes over to the wavefunctions of
an infinite square potential well in the limit of infinite well U0 → ∞. Also, you may use
boundary conditions (3.22) and (3.23) to eliminate constant D in terms of A and determine
the constant A by imposing the normalisation condition,∫ +∞

−∞
|χ(x)|2dx = 1

Resulting ground state probability distribution |χ1(x)|2 is plotted in Fig. 3.5. Note that
there is a non-zero probability of finding particle in the classically forbidden region |x| > a,
which is not the case for the infinite potential well.

The solutions for the wavefunctions in case E > U0 are not dealt with explicitly in this
section, as they are an example of scattering states, which we will deal with in the next
two sections.

3.1.3 The harmonic oscillator

The harmonic oscillator potential (see left panel of Fig. 3.6) is crucial in modelling the
dynamics of many physics systems.

U(x) =
1

2
k x2 =

1

2
mω2x2, (3.29)
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where k is the often referred to as elastic constant and ω =
√
k/m is the harmonic oscil-

lator angular frequency. Let us remind ourselves the solution for a particle subject to an
harmonic potential in classical mechanics (which you have seen in Part IA Dynamics and
Relativity). Newton’s second law implies

d2x(t)

dt2
= −ω2x(t). (3.30)

The general solution is given by

x(t) = A sin(ωt) +B cos(ωt) (3.31)

The particle oscillates around the minimum of the potential at x = 0, with period T =
2π/ω.

Figure 3.6: The harmonic oscillator potential (left) and lowest energy eigenfunctions
(right).

In quantum mechanics, the stationary states are described by TISE

− ~2

2m
χ′′(x) +

1

2
mω2x2 χ(x) = Eχ(x) (3.32)

subject to the normalisability condition,∫ +∞

−∞
dx |χ(x)|2 N < ∞ and N 6= 0

Given that a particle subject to an harmonic potential is a bound state, we expect to find
a discrete set of normalisable eigenfunctions and, because of the potential is symmetric,
we expect to find eigenfunctions that are either even or odd. To solve the above equation,
we define the rescaled variables

ξ2 =
mω

~
x2 and ε =

2E

~ω
. (3.33)
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In terms of these variables Eq. (3.32) becomes,

−d
2χ(ξ)

dξ2
+ ξ2χ(ξ) = εχ(ξ) (3.34)

Let us start with a the special case, ε = 1, which corresponds to the energy eigenvalue that
we indicate by E0 = ~ω/2. By inspection, we find normalisable solution

χ0(x) = exp

(
−1

2
ξ2

)
(3.35)

If we plug Eq. (3.35) into Eq. (3.34) for ε = 1, we see that χ0(ξ) is indeed a solution of the
rescaled TISE, as

dχ(ξ)

dξ
= −ξ exp

(
−1

2
ξ2

)
d2χ(ξ)

dξ2
= (ξ2 − 1) exp

(
−1

2
ξ2

)
⇒ − d2χ(ξ)

dξ2
+ ξ2χ(ξ) = χ(ξ) �

The corresponding eigenfunction χ0(x) with energy E0 = ~ω/2 can be written as

χ0(x) = A exp
(
− mω

2~
x2
)
, (3.36)

in which we have added an overall contact A that is completely determined by requiring
that χ0(x) is normalised to 1.

To find the other eigenvalues and corresponding eigenfunction of the Hamiltonian, we now
look for the general solution of the form,

χ(ξ) = f(ξ) exp

(
−1

2
ξ2

)
⇒ dχ

dξ
=

(
df

dξ
− ξ f

)
exp

(
−1

2
ξ2

)
⇒ d2χ

dξ2
=

(
d2f

dξ2
− 2ξ

df

dξ
+ (ξ2 − 1) f

)
exp

(
−1

2
ξ2

)
,

where I omitted the dependence of the functions χ and f on ξ. Then (3.34) becomes,

−d
2f

dξ2
+ 2ξ

df

dξ
+ (1− ε)f = 0 (3.37)

You can easily check that f = 1 is a solution when ε = 1.
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If we now apply the standard power series method to find the general form of f (ξ = 0 is
a regular point), we set,

f(ξ) =

∞∑
n=0

an ξ
n (3.38)

To plug the series (3.38) into (3.37), we compute

f(ξ) =
∞∑
n=0

an ξ
n (3.38)

df

dξ
=

∞∑
n=0

nan ξ
n−1

ξ
df

dξ
=

∞∑
n=0

nan ξ
n

Then

d2f

dξ2
=

∞∑
n=0

n (n− 1) an ξ
n−2 =

∞∑
n=0

(n+ 1) (n+ 2) an+2 ξ
n

Finally,

d2f

dξ2
− 2ξ

df

dξ
+ (ε− 1)f =

∞∑
n=0

[(n+ 1)(n+ 2) an+2

−2nan + (ε− 1)an] ξn

Thus

d2f

dξ2
− 2ξ

df

dξ
+ (ε− 1)f = 0 (3.37)

implies,

(n+ 1)(n+ 2) an+2 − 2nan + (ε− 1)an = 0

⇒ an+2 =
(2n− ε+ 1)

(n+ 1)(n+ 2)
an (3.39)

It is important to notice that the harmonic potential is reflection invariant and therefore
χ(−x) = ±χ(x), which implies f(−ξ) = ±f(ξ). Hence we have a further constraint on the
coefficient of the series. With m = 1, 2, 3 . . ., we can set,
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• either an = 0 for n = 2m− 1 ⇔ f(−ξ) = f(ξ).

• or an = 0 for n = 2m ⇔ f(−ξ) = −f(ξ).

Finally, the series in (3.38) can either be finite or infinite. There are two possibilities

• The series (3.38) terminates. In other words ∃ N > 0 such that an = 0 ∀ n > N .

• The series (3.38) does not terminate. In other words @ N > 0 such that an = 0 ∀
n > N .

Proposition If the series (3.38) does not terminate, the solution does not yield normalis-
able eigenfunctions. As a consequence, the series must terminate.

Proof:
Suppose series (3.38) does not terminate. The consider the large-ξ behaviour of the func-
tion,

f(ξ) =
∞∑
n=0

an ξ
n.

This is determined by the asymptotic behaviour of the coefficients an as n → ∞. If the
series does not terminate then (3.39) determines the asymptotic behaviour of the coefficients
as,

an+2

an
→ 2

n

This is identical to the asymptotic behaviour of the coefficients of the Taylor series for the
function,

exp(+ξ2) =

∞∑
m=0

ξ2m

m!
(3.40)

Indeed if we write the series as,

exp(+ξ2) =
∞∑
n=0

bn ξ
n

with coefficients,

bn =
1

m!
for n = 2m

= 0 for n = 2m+ 1

we immediately find (for n = 2m)
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bn+2

bn
=

(n/2)!

(n/2 + 1)!
=

2

n+ 2
→ 2

n

as n→∞. The fact that the coefficients of the two series (3.38) and (3.40) have the same
behaviour as n→∞ means that the respective sums have the same asymptotics as ξ →∞.
Thus, if the series does not terminate, we must have,

f(ξ) ∼ exp(+ξ2)

or equivalently,

χ(ξ) = f(ξ) exp

(
− ξ

2

2

)
∼ exp

(
+
ξ2

2

)
as ξ →∞, which corresponds to a non-normalisable wavefunction. �.

Therefore the series must terminate and ∃ an integer N ≥ 0 such that aN+2 = 0 with
aN 6= 0. Thus, from (3.39) we find,

(2N − ε+ 1) = 0

Recalling that ε = 2E/~ω we immediately obtain the energy spectrum of the quantum
harmonic oscillator,

E = EN =

(
N +

1

2

)
~ω

The ground state energy is given by E0 = ~ω/2. The energy levels are equally spaced with
EN+1−EN = ~ω. This means that the system can absorb or emit photons whose angular
frequency is an integer multiple of ω ⇒ equally-spaced spectral lines.

The corresponding wavefunction is

χN (x) = fN (ξ) exp

(
−ξ

2

2

)
(3.41)

Notice that fN (ξ) is an even/odd function of ξ =
√
mωx2/~ for N even/odd,

χN (−x) = (−1)N χN (x)

fN (ξ) is an N ’th order polynomial (known as the N ’th Hermite polynomial) in ξ and
therefore the wavefunction has N nodes or zeros. The first few levels (see the right plot on
Fig.3.6) are given explicitly in the table below.
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N EN χN (ξ)

0 1
2~ω exp

(
− ξ2

2

)
1 3

2~ω ξ exp
(
− ξ2

2

)
2 5

2~ω
(
1− 2ξ2

)
exp

(
− ξ2

2

)
3 7

2~ω
(
ξ − 2

3ξ
3
)

exp
(
− ξ2

2

)
In fact one can derive a general expression (see e.g. Schiff, “Quantum Mechanics”, 3rd
edition if you are interested in the explicit proof):

fn(ξ) = (−1)n eξ
2 dn

dξn
e−ξ

2
(3.42)

3.2 Free particle and Gaussian wavepacket

A free particle solution corresponds to a solution of the TISE with U(x) ≡ 0. From the
discussion in the previous section, we see immediately that the free particle is problematic.
Indeed it can be seen as the limit a → ∞ of a infinite square well potential, in which the
normalisation condition (3.8) cannot be satisfied. Let us go through the TISE solution to
see where the problem explicitly arises and how it can be solved.

For U(x) = 0 the stationary state wavefunction χ(x) satisfies ,

− ~2

2m
χ′′(x) = Eχ(x) (3.43)

This equation has a plane-wave solution, which in one spatial dimension (x ∈ R)

χ(x) = A exp(ikx). (3.44)

This satisfies (3.43) provided

E =
~2k2

2m

The complete wavefunction,

ψk(x, t) = χ(x) exp

(
− iEt

~

)
= A exp(ikx) × exp

(
−i~k

2t

2m

)
(3.45)

coincides with the ”De Broglie wave” that we introduced in (2.22). Such a solution is
non-normalisable and thus does not give an acceptable probability density. There are
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Figure 3.7: Gaussian wave packet.

several ways to resolve this problem. One way is to treat the plane wave solution ψk as
a limiting case of a Gaussian wave packet describing a localised particle, as we will see in
Sect. 3.3.1. Alternatively, the plane wave solution can be interpreted as describing a beam
of particles rather than a single particle. We will discuss this second possible interpretation
in Sect. 3.3.2.

3.2.1 Gaussian wavepacket

Starting from Eq. (3.45), we can construct new solutions of the Schrödinger equation by
taking a linear superposition of ψk(x, t). Given that k is a continuous variable we can make
a linear superposition by integration, as in Eq. (??),

ψ(x, t) =

∫
dk A(k)ψk(x, t)

=

∫
dk A(k) exp(ikx) exp

(
−i~k

2

2m
t

)
(3.46)

where A(k) is a function of k that should go to zero sufficiently fast that the integral exists.
The Gaussian wavepacket corresponds to the choice,

AGP(k) = exp
[
−σ

2
(k − k0)2

]
(3.47)

where σ > 0, which looks like a Gaussian distribution of wave numbers k centred at
k = k0 with width ∼ 1/

√
σ (see Fig. 3.7) The resulting wavefunction can be obtained by
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substituting (3.47) for A(k) in (3.46),

ψGP(x, t) =

∫ +∞

−∞
dk exp (F (k))

where GP stands for Gaussian wavePacket and the exponent in the integrand is,

F (k) = −σ
2

(k − k0)2 + i

(
kx− ~k2

2m
t

)
= −1

2

(
σ +

i~t
m

)
k2 + (k0σ + ix)k − σ

2
k2

0. (3.48)

Completing the square gives,

F (k) = −α
2

(
k − β

α

)2

+
β2

2α
+ δ, (3.49)

where

α = σ +
i~t
m

β = k0σ + ix δ = −σ
2
k2

0 (3.50)

Hence,

ψGP(x, t) = exp

(
β2

2α
+ δ

)∫ +∞

−∞
dk exp

(
−1

2
α

(
k − β

α

)2
)

= exp

(
β2

2α
+ δ

)∫ +∞−iν

−∞−iν
dk̃ exp

(
−1

2
αk̃2

)
where k̃ = k− β/α and ν = =[β/α]. The integral can be related to the standard Gaussian
integral

I(a) =

∫ +∞

−∞
dx exp(−a x2) =

√
π

a
(3.51)

by a straightforward application of the Cauchy residue theorem. The result is,

ψGP(x, t) =

√
2π

α
exp

(
β2

2α
+ δ

)
. (3.52)

This wavefunction decays exponentially at x → ±∞ and is therefore normalisable. The
resulting position probability density is,

ρGP(x, t) = |ψ̄GP(x, t)|2 = ψ̄∗GP(x, t)ψ̄GP(x, t) (3.53)
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Figure 3.8: The probability distribution for the particle to be at the position x.

where ψ̄GP is the normalised wavefunction corresponding to ψGP(x, t). After some algebra,
we obtain,

ρGP(x, t) =
C√

σ2 + ~2t2
m2

exp

−σ
(
x− ~k0

m t
)2

σ2 + ~2t2
m2

 .
Note that it is straightforward to prove (you can do it at home as an exercise) that the
constant C is fixed by the normalisation condition,∫ +∞

−∞
dx ρGP(x, t) = 1 ⇒ C =

√
σ

π
. (3.54)

Note that ρGP(x, t) defines a Gaussian probability distribution for the position of the parti-
cle, as represented in Fig. 3.8. The centre 〈x〉 of the distribution corresponds to the average
value of position:

〈x〉 =
~k0

m
t, (3.55)

which moves constant speed

v =
~k0

m
=
〈p〉
m
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Here 〈p〉 = ~k0 denotes the average value of the momentum. The width of the distribu-
tion, ∆x (also known as the standard deviation) corresponds to the uncertainty in the
measurement of position,

∆x =
√
〈x2〉 − 〈x〉2 =

√
1

2

(
σ +

~2t2

m2σ

)
(3.56)

and it increases with time, which means that the Gaussian wavepacket is not a stationary
state, as it is the case for a generic superposition of stationary states, as we discussed in
Sect. 2.5. Physically, the Gaussian wavepacket corresponds to a state in which the particle
is localised near the point 〈x〉 with an uncertainty ∆x in the measurement of its position.
Not only the Gaussian wave is moving, it is also spreading, becoming more and more
delocalised. The plane wave solution ψk(x, t) is a limiting case of the Gaussian wavepacket
where the uncertainty in position ∆x becomes infinite. This an idealised state in which
the momentum takes the definite value p = ~k. The uncertainty in the momentum of the
particle, ∆p, therefore vanishes. This is related to the Heisenberg uncertainty principle,
which we will discuss in Chapt. 4, when we will show that the Gaussian wavepacket is the
state with minimum uncertainty.

3.2.2 Beam interpretation

Another way to use the non-normalisable De Broglie plane waves is to resurrect them by
endowing wavefunctions of this kind with a different interpretation. Rather than thinking
of them as quantum probabilities for a single particle, we will instead consider them as
describing a continuous beam of particles, with the probability density now interpreted as
the average density of particles.

Basically we can describe the free particle wavefunctions, Eq. (3.45) as describing a beam
of particles of momentum

p = ~k

and energy

E = ~ω =
~2k2

2m
=

p2

2m
.

The probability density

ρ(x, t) = |ψk(x, t)|2 = |A|2 (3.57)

is now interpreted as the constant average density of particles. The probability current is
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Figure 3.9: The potential barrier (blue), the initial state of a wave packet at the time t
(red), the final state of a wave packet (green).

given by

jk(x, t) = − i~
2m

(
ψ∗k
dψk
dx

− ψk
dψ∗k
dx

)
= − i~

2m
× |A|2 × 2ik

= |A|2 × ~k
m

= |A|2 × p

m
= average density × velocity

= average flux of particles, (3.58)

where this last expression has the interpretation of the average density of particles multi-
plied by their velocity or, alternatively, as the average flux of particles.

3.3 Scattering states

Consider a particle scattering on a potential barrier like the one shown (in blue) in Fig. 3.9,
where U0 is the potential barrier height and a is its width. An incoming particle of mass
m and total energy E hits the barrier from left. In classical mechanics, if E > U0 the
particle gets over the barrier and proceeds to x = +∞. On the other hand, if E < U0 the
particle is reflected back towards x = −∞. Instead, in quantum mechanics, if we consider
a localised Gaussian wavepacket with normalised wavefunction, ψGP(x, t)∫ +∞

−∞
|ψGP(x, t)|2 dx = 1. (3.59)
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The wavepacket is centred at x = x0(t) << 0 at initial time t = 0 with average momentum
〈p〉 > 0, as shown in Fig. 3.9 (in red). If we evolve the wave functions according to the
TDSE to get final state wavefunction for t >> 0 we end up with the resulting probability
distribution shown in green in the same Fig. 3.9, i.e. the function can be both transmitted
and reflected, independently of whether E > U0 or E < U0. We define the reflection and
transmission coefficients,

R = lim
t→∞

∫ 0

−∞
|ψGP(x, t)|2 dx

T = lim
t→∞

∫ +∞

0
|ψGP(x, t)|2 dx, (3.60)

which measure the probabilities of the particle being reflected or transmitted respectively.
As total probability is conserved as we have,

R+ T =

∫ +∞

−∞
|ψGP(x, t)|2 dx = 1 (3.61)

In practice this is too mathematically challenging so will work with non-normalisable sta-
tionary states (plane waves) instead using the beam interpretation, which we described in
Sect. 3.3.2. Fortunately both approaches yield the same answers.

Let’s take the plane-wave solution,

ψk(x, t) = χk(x) exp

(
−i~k

2t

2m

)
(3.62)

where χk(x) = A exp(ikx) is interpreted as a beam of particles with momentum p = ~k.
The average density of particles is |A|2. The incident particle flux (probability current) is
defined as in Eq. (3.58). In what follows, we will explicitly solve the Schrödinger equation
for the scattering of particles off a potential step and a potential barrier using the beam
interpretation, i.e working with non-normalisable eigenfunctions, which are associated with
a beam of particles rather than with single particles.

3.3.1 Scattering on a potential step

Consider a beam of particles of massm scattering on the potential step shown in Fig. 3.10

U(x) =

{
0 x ≤ 0

U0 x > 0,
(3.63)

The eigenfunctions χk(x) obey the TISE

− ~2

2m
χ′′k(x) + U(x)χk(x) = Eχk(x) (3.64)

59



Quantum Mechanics - Mathematical Tripos Part IB Michaelmas 2022

Figure 3.10: The potential step (blue) and wavefunction (red) of an incoming particle with
energy E < U0.

We will start by considering the case where E > U0 and comment on the E ≤ U0 at the
end.

In the region x ≤ 0, the Schrödinger equation becomes,

χ′′k(x) + k2χk(x) = 0, (3.65)

where k =
√

2mE/~2 ≥ 0. For E > 0, the general solution takes the form,

χk(x) = A exp(ikx) +B exp(−ikx) (3.66)

We can define χ
(+)
k (x) = A exp(ikx), which corresponds to a beam of particles incident on

the step from x = −∞ with momentum p = ~k. The corresponding particle flux is given
by the probability current,

j
(+)
k (x) = |A|2 × ~k

m
, (3.67)

and χ
(−)
k (x) = B exp(−ikx), which corresponds to a beam of reflected particles moving to

the left (i.e. towards from x = −∞) with momentum p = −~k. The corresponding particle
flux is,

j
(−)
k (x) = −|B|2 × ~k

m
(3.68)

In our scattering problem we have incident particles from the left and also expect some
particles to be reflected off the barrier. Thus we retain the general solution,

χk(x) = A exp(ikx) +B exp(−ikx) for x ≤ 0. (3.69)
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The resulting expression corresponds to a superposition of the two beams χ
(+)
k and χ

(−)
k .

The total flux is given by

jk(x) = − i~
2m

[
χ∗k
dχk(x)

dx
− χk

dχ∗k(x)

dx

]
=

~k
m

(
|A|2 − |B|2

)
= j

(+)
k (x) + j

(−)
k (x), (3.70)

where we notice that cross-terms involving χ
(+)
k and χ

(−)
k vanish.

In the region x > 0, the Schrödinger equation becomes,

χ′′
k̃
(x) + k̃2χk̃(x) = 0, (3.71)

where,

k̃ =

√
2m(E − U0)

~2
≥ 0. (3.72)

The general solution is

χk̃(x) = C exp(ik̃x) +D exp(−ik̃x) (3.73)

As we did before, we define χ̃
(+)

k̃
(x) = C exp(ik̃x), which corresponds to a beam of particles

in region x > 0 moving towards x = +∞. This corresponds to a transmitted wave in the

scattering problem. χ̃
(−)

k̃
(x) = D exp(−ik̃x) corresponds to a beam of particles incident

on the barrier from the right (i.e. from x = +∞). This solution is not relevant for our
scattering problem and thus we set D = 0 and choose the solution,

χk̃(x) = C exp(ik̃x) for x > 0 (3.74)

It remains to enforce the continuity of the stationary-state wavefunction and its derivative
at x = 0. Comparing the solutions (3.69) and (3.74) we find,

• Continuity of χ(x) at x = 0 ⇒ A+B = C

• Continuity of χ′(x) at x = 0 ⇒ ikA− ikB = ik̃C

Solving the equations above we get,

B =
k − k̃
k + k̃

A C =
2k

k + k̃
A. (3.75)

61



Quantum Mechanics - Mathematical Tripos Part IB Michaelmas 2022

If we now identify the particle flux corresponding to each component of the wave function,
we have an incoming flux given by

jinc(x) = j(+)(x) =
~k
m
|A|2, (3.76)

a reflected flux

jref(x) = −j(−)(x) = +
~k
m
|B|2 =

~k
m

(
k − k̃
k + k̃

)2

|A|2 (3.77)

and a transmitted flux

jtr(x) =
~k̃
m
|C|2 =

~k̃
m

4k2

(k + k̃)2
|A|2. (3.78)

They are all constant functions.

To determine the portion of the incident beam, which is reflected/transmitted we compute
the corresponding probabilities,

R =
jref

jinc
=

(
k − k̃
k + k̃

)2

T =
jtr
jinc

=
4kk̃

(k + k̃)2
. (3.79)

Note that the undetermined constant A cancels out. We can check explicitly that R+T = 1.
Unlike the classical case, there is still a finite probability of reflection for E > U0. However
as E →∞ we have k− k̃ → 0 which implies R→ 0, T → 1, corresponding to the classical
limit.

Finally we consider the case E < U0. According to classical mechanics the particle should
always be reflected. In this case the solution for x ≤ 0, Eq. (3.69) remains unchanged.
Instead, for x > 0 the time-independent Schrödinger equation becomes,

χ′′(x)− κ2χ(x) = 0. (3.80)

where

κ =

√
2m(U0 − E)

~2
> 0 (3.81)

. The general solution of this equation can be written as

χκ(x) = G exp(+κx) + F exp(−κx). (3.82)
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. The growing exponential diverges at x → +∞, thus is unphysical. Hence we must set
G = 0. The solution for x > 0 is therefore

χκ(x) = F exp(−κx) for x > 0 (3.83)

If we now impose the boundary conditions on the solutions (3.69) and (3.83) at x = 0, we
get

• Continuity of χ(x) at x = 0 ⇒ A+B = F .

• Continuity of χ′(x) at x = 0 ⇒ ikA− ikB = −κF

Solving the above equations, we get

B =

(
ik + κ

ik − κ

)
A F =

2ik

ik − κ
A (3.84)

If we now identify the particle flux corresponding to each component of the wave function,
we get an incoming flux

jinc(x) = j
(+)
k (x) =

~k
m
|A|2, (3.85)

a reflected flux

jref(x) = −j(−)
k (x) = +

~k
m
|B|2 =

~k
m
|A|2 = jinc(x). (3.86)

The transmitted particle flux vanishes, as

jtr(x) = − i~
2m

[
χ∗κ(x)

dχκ(x)

dx
− χκ(x)

dχ∗κ(x)

dx

]
= 0. (3.87)

Thus the whole beam is reflected, as

R =
jref

jinc
= 1

T =
jtr
jinc

= 0 (3.88)

As in the classical case, the particle is certain to be reflected. However the wavefunc-
tion is not equal to zero in the classically forbidden region, rather it decays as shown in
Fig. 3.10.
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3.3.2 Scattering off a potential barrier

Consider an incident particle with energy E < U0 hitting the potential barrier of Fig. 3.9.
We look for stationary state wave function obeying,

− ~2

2m
χ′′(x) + U(x)χ(x) = Eχ(x). (3.89)

We have dropped the suffix k, as by now it is clear that we are talking of a plane wave
solutions. Let us define the real constants

k =

√
2mE

~2
≥ 0 κ =

√
2m(U0 − E)

~2
≥ 0. (3.90)

The solution has the general form

χ(x) =


exp(ikx) +A exp(−ikx) x < 0

B exp(−κx) + C exp(+κx) 0 < x < a

D exp(+ikx) x > a,

(3.91)

where A and D are coefficients of reflected and transmitted waves respectively. The coef-
ficient of incident wave exp(+ikx) has been normalised to unity.

Let us know impose the boundary conditions:

• Continuity of χ(x) at x = 0 ⇒ 1 +A = B + C.

• Continuity of χ′(x) at x = 0 ⇒ ik − ikA = −κB + κC

• Continuity of χ(x) at x = a ⇒ B exp(−κa) + C exp(+κa) = D exp(ika).

• Continuity of χ′(x) at x = a ⇒ −κB exp(−κa) + κC exp(+κa) = ikD exp(ika)

Thus we have four equations for the four unknown constants A, B, C and D, which has
solution,

D =
−4iκk

(κ− ik)2 exp[(κ+ ik)a]− (κ+ ik)2 exp[−(κ− ik)a]
(3.92)

The transmitted flux is given by

jtr(x) =
~k
m
|D|2. (3.93)

On the other hand, the incident flux is given by

jin(x) =
~k
m

(3.94)
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Thus the transmission probability is given as,

T =
jtr
jinc

= |D|2

=
4k2κ2

(k2 + κ2)2 sinh2(κa) + 4k2κ2
(3.95)

In the limit in which we have low energy particle scattering on very tall barrier U0−E >>
~2/2ma2, we have κa >> 1. In this case (3.95) simplifies to give

T '
(

16k2κ2

(k2 + κ2)2

)
exp(−2κa) ∝ exp

[
−2a

~
√

2m(U0 − E)

]
. (3.96)

There is transmission, even though the energy lies below the top of the barrier. This is a
wave phenomenon, and in quantum mechanics it is also one exhibited by particles. It is
widely known as quantum tunneling.

Not examinable *We pause to analyse an apparent difficulty. The wavefunction does
not vanish inside the barrier, and thus there appears to be some probability of finding
the particle with negative kinetic energy. How can we make sense of it? We look at
the uncertainty relation to remove an apparent paradox that arises from a too classical
description of the process. An experiment to study the particle inside a potential barrier
must be able to localise it within an accuracy ∆x� a. Applying the Heisenberg uncertainty
principle

∆x∆p ≥ ~
2
, (3.97)

the measurement of the position will transfer to a particle momentum, with

∆p� ~
2a
, (3.98)

which corresponds to a transfer of energy

∆E � ~2

2ma2
. (3.99)

In order to observe the negative kinetic energy, this uncertainty must be much less than
|E − U0|, so that

~2κ2

2m
� ~2

2ma2
, (3.100)

which implies κa � 1. In this limit, the quantity to be measured |T |2, Eq. (3.96), is
vanishingly small. For a deeper explanation, have a look at the book by S. Gasiorowicz,
”Quantum Physics” (Wiley 2003s), Section 4.3. *
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3.3.3 Physics examples of quantum tunneling*

In this section we give several physics examples among an impressive number of physics
and technology applications that quantum tunneling has in physics.

Figure 3.11: Left: the potential seen by the electrons in a metal when an electric filed is
turned on. Right: the nuclear potential.

A first example of tunneling is given by cold emission. In Sect. 1 we discussed the photo-
electric effect and we saw that electrons need a minimum energy W (the work function) to
escape from a metal. We may view the most easily liberated electrons as trapped in a large
box, with a potential barrier of height W . The photoelectric effect is not the only way in
which electrons can be removed from a metal. They can also be removed by heating the
metal, or can be removed at room temperature by applying an external electric field E .
In the latter case, the phenomenon is called cold emission. It occurs because the external
field changes the potential seen by the electrons from a macroscopic barrier of height W
to one describe by W − eEx, where x is the distance from the walls of the box, see the
left panel of Fig. 3.11 for a schematic illustration. The change creates a barrier of finite
width, and electrons can tunnel through it. We define the most easily removed electrons
as having an energy E = 0. Then the transmission coefficient is given by

|T |2 ∝ exp

[
−
∫ a

0

√
2m(W − eEx)/~2 dx

]
= exp

[
−2
√

2mWa2/9~2
]
, (3.101)

which is known as the Fowler-Nordheim formula. A version of the cold electron emission
described above has found an important application in the scanning tunneling microscopes,
which are able to get a resolution of O(10−10) m.

Another example is given by the radioactive decay of nuclei. Consider the radioactive decay
of an isotope NA

Z . Here A and Z are the atomic weight and atomic number respectively
(see Appendix A.2). The decay proceeds through emission of an α-particle (i.e. a Helium
nucleus),

NA
Z → NA−4

Z−2 + He4
2,
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see Fig. 3.12 for an illustration. In a simple model of this process due to Gammow the α-
particle feels a potential due to the other particles in the nucleus which has the form shown
on the right panel of Fig. 3.11. The potential has a short-range attractive component due
to the strong nuclear force and a long-range component due to the electrostatic repulsion
between the protons in the α-particle and those in the nucleus. According to Gammow’s
model, the α-decay occurs when α-particle ”tunnels” through potential barrier and the
half-life of the nucleus is inversely proportional to the transmission coefficient T , so that
the half-life exponentially depends on the height and width of the barrier. This model is
extremely successful and it accounts for the huge range of half-lives of radioactive isotopes
found in nature (and created in the lab). These range from 3 × 10−7 s to 2 × 1017

years!

Finally, a further example has to do with semiconductor devices such as electronic cir-
cuit components or integrated circuits that are designed at nanoscales; hence, the term
‘nanotechnology.’ For example, a diode (an electric-circuit element that causes an electron
current in one direction to be different from the current in the opposite direction, when the
polarity of the bias voltage is reversed) can be realized by a tunneling junction between
two different types of semiconducting materials. In such a tunnel diode, electrons tunnel
through a single potential barrier at a contact between two different semiconductors. At
the junction, tunneling-electron current changes nonlinearly with the applied potential dif-
ference across the junction and may rapidly decrease as the bias voltage is increased. This
is unlike the Ohm’s law behavior that we are familiar with in household circuits. This kind
of rapid behaviour (caused by quantum tunneling) is desirable in high-speed electronic
devices and it is at the basis of the development of nanotechnologies.

Figure 3.12: Radioactive decay.
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Chapter 4

Simultaneous measurements in
quantum mechanics

In the last chapter we have encountered a number of interesting properties of simple quan-
tum systems. Some of these are accidental features of specific potentials (the even spacing
of energy levels for the harmonic oscillator for example) but other seem to be more gen-
eral. In this chapter, we discuss the notion of simultaneous measurements of observables
and prove two important theorems about these — Ehrenfest’s theorem and the Heisenberg
uncertainty principle – which are among the pillars of quantum mechanics.

4.1 Commutators

In order to discuss about simultaneous measurements, it is essential to define the operation
of commutation between two operators.

Definition:The commutator operator of two operators is defined as

[Â, B̂] = ÂB̂ − B̂Â. (4.1)

Note that the commutator operator depends linearly on both entries. It is easy to verify
the following identities:

[Â, Â] = 0

[Â, B̂] = −[B̂, Â]

[Â, B̂Ĉ] = [Â, B̂]Ĉ + B̂ [Â, Ĉ] (4.2)

[ÂB̂, Ĉ] = Â [B̂, Ĉ] + [Â, Ĉ] B̂. (4.3)

The commutator plays a crucial role in describing symmetries of quantum mechanical
systems, as we will see when we consider angular momentum. It also gives a way of
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calibrating how close two operators are to having simultaneously determinable eigenvalues,
as we will see in the following part of this chapter, in particular when discussing the
uncertainty principle.

Exercise: Compute the commutator of the position and momentum operator in 1D.

The position and momentum operators are represented in the x-space in 1D as
p̂ = −i~∂/∂x and x̂ = x. We can work out their commutator by considering their action
on a general wavefunction ψ:

x̂p̂ψ = −ix~∂ψ
∂x

p̂x̂ψ = −i~∂(xψ)

∂x
= −i~ψ − ix~∂ψ

∂x
⇒ [x̂, p̂]ψ = i~ψ, (4.4)

and as this is true for all ψ we have

[x̂, p̂] = i~Î , � (4.5)

where Î is the identity operator. Eq. (4.5) is the canonical commutation relation. It can
be shown (though not in this course: see Part II Principles of Quantum Mechanics) that
these commutation relations essentially characterise the position and momentum operators.
That is, any pair of operators satisfying these relations is equivalent (in a sense that can
be made precise) to position and momentum.

Definition: We say two Hermitian operators Â and B̂ are simultaneously diagonalisable
if the space of normalisable wavefunctions has a complete basis of joint eigenfunctions
{ψi} i.e. of eigenfunctions such that Âψi = aiψi and B̂ψi = biψi for some real numbers
ai, bi ∈ R.

Theorem 4.1: Two Hermitian operators Â and B̂ are simultaneously diagonalisable if
and only if [Â, B̂] = 0.

Proof: If Â and B̂ are simultaneously diagonalisable, the space of normalisable
wavefunctions has a complete basis of joint eigenfunctions {ψi}. Now for any such eigen-
function

[Â, B̂]ψi = ÂB̂ψi − B̂Âψi = (aibi − biai)ψi = 0. (4.6)

Now, if the basis {ψi} is complete, any wavefunction ψ can be written as ψ =
∑

i ciψi,
so

[Â, B̂]ψ =
∑
i

ci[Â, B̂]ψi = 0. (4.7)

As a result, we have the operator equation [Â, B̂] = 0, where 0 is the zero operator, which
maps any wavefunction to the zero function.
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Conversely, if [Â, B̂] = 0 and Âψi = aiψi, then

0 = [Â, B̂]ψi = Â(B̂ψi)− ai(B̂ψi) ⇒ Â(B̂ψi) = ai(B̂ψi) (4.8)

so B̂ψi is also an eigenfunction of Â with eigenvalue ai. Thus B̂ maps the eigenspace E
of Â with eigenvalue ai to itself. If we indicate by B̂|E for the operator B̂ restricted to E,
then clearly B̂|E is a Hermitian operator on E. Thus, by Theorem 4.3, we can find a basis
of E in which B̂ acts diagonally. Since this is true for all eigenspaces of Â, we can find a
complete basis of simultaneous eigenfunctions of Â and B̂. �

4.2 Heisenberg’s uncertainty principle

We define the uncertainty (∆ψA) in a measurement of A on the state ψ by

(∆ψA)2 = 〈(Â− 〈Â〉ψ)2〉ψ = 〈Â2〉ψ − (〈Â〉ψ)2, (4.9)

according to the definition of the statistical variance of the probability distribution for the
possible outcomes of the measurement of A on ψ.

Lemma 4.2: The uncertainty (∆ψA) ≥ 0 and (∆ψA) = 0 if and only if ψ is an eigen-

function of Â.

Proof: We can write

(∆ψA)2 = 〈(Â− 〈Â〉ψ)2〉ψ
= ((Â− 〈Â〉ψ)ψ, (Â− 〈Â〉ψ)ψ) (4.10)

If we now call φ = (Â− 〈Â〉ψ)ψ, we have (φ, φ) ≥ 0, with equality only if φ = 0, i.e.

Âψ = 〈Â〉ψψ, (4.11)

which implies that ψ is an eigenfunction of Â.
Conversely, if ψ is an eigenfunction of Â then 〈Â〉ψ = (ψ, Âψ) = a(ψ,ψ) = a and 〈Â2〉ψ =

(ψ, Â2ψ) = a2(ψ,ψ) = a2, so ∆ψA = 〈Â2〉ψ − (〈Â〉ψ)2 = a2 − a2 = 0. �

Theorem 4.3 (Schwarz’s inequality): If φ and ψ are any two normalisable wavefunc-
tions, then |(φ, ψ)|2 ≤ (φ, φ)(ψ,ψ). We have equality if and only if φ = aψ some complex
number a.

Proof: For any a we have

0 ≤ (φ− aψ, φ− aψ). (4.12)
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If in particular we take a = (ψ, φ)/(ψ,ψ), we have

0 ≤ (φ, φ)− 2
|(ψ, φ)|2

(ψ,ψ)
+
|(ψ, φ)|2

(ψ,ψ)

⇒ |(φ, ψ)|2 ≤ (φ, φ)(ψ,ψ), (4.13)

with
|(φ, ψ)|2 = (φ, φ)(ψ,ψ)⇔ φ = aψ, (4.14)

because the norm of a wavefunction is zero only if the wavefunction is zero. �

Theorem 4.4 (Generalised uncertainty theorem): If A and B are any two observ-
ables, and ψ is any state, then

(∆ψA) (∆ψB) ≥ 1

2
|(ψ, [Â, B̂]ψ)| (4.15)

Proof: We have

(∆ψA)2 = 〈(Â− 〈Â〉ψ)2〉ψ
= ((Â− 〈Â〉ψ)ψ, (Â− 〈Â〉ψ)ψ)

(∆ψB)2 = ((B̂ − 〈B̂〉ψ)ψ, (B̂ − 〈B̂〉ψ)ψ). (4.16)

So, writing Â′ = Â− 〈Â〉ψ and B̂′ = B̂ − 〈B̂〉ψ, we have

(∆ψA)2(∆ψB)2 = (Â′ψ, Â′ψ)(B̂′ψ, B̂′ψ)

≥ |(Â′ψ, B̂′ψ)|2

= |(ψ, Â′B̂′ψ)|2, (4.17)

where in the second-to-last line we used Theorem 4.6 and in the last line we used the fact
that Â′ is Hermitian. We now want to write Â′B̂′ in terms of the commutator and the
anti-commutator of the two operators, where the anti-commutator is defined as

{Â′, B̂′} = Â′B̂′ + B̂′Â′. (4.18)

We can easily see that

Â′B̂′ =
1

2

(
[Â′, B̂′] + {Â′, B̂′}

)
. (4.19)

Using the definition of Hermitian conjugation, and the fact that (Â′B̂′)† = B̂′†Â′†, we can
easily see that

(ψ, {Â′, B̂′}ψ) = ({Â′, B̂′}†ψ,ψ) = ({Â′, B̂′}ψ,ψ) = (ψ, {Â′, B̂′}ψ)∗ (4.20)

(ψ, [Â′, B̂′]ψ) = ([Â′, B̂′]†ψ,ψ) = −([Â′, B̂′]ψ,ψ) = −(ψ, {Â′, B̂′}ψ)∗ (4.21)
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and that therefore (ψ, [Â′, B̂′]ψ) is purely imaginary and (ψ, {Â′, B̂′}ψ) is purely real. As
a result

|(ψ, Â′B̂′ψ)|2 =
1

4
(|(ψ, [Â′, B̂′]ψ)|2 + |(ψ, {Â′, B̂′}ψ)|2) (4.22)

Combining Eq. (4.17) and (4.22), we have

(∆ψA)2(∆ψB)2 ≥ 1

4
(|(ψ, [Â, B̂]ψ)|2, (4.23)

and taking the square root, we have proven the theorem. �

The first thing to outline is that if two observables A and B are associated to operators
Â and B̂ that commute ([Â, B̂] = 0), i. e. of two operators that can be simultaneously
diagonalisable, then they can be simultaneously measured with arbitrary precision. This
is why the commutator of two operators has to do with simultaneous measurements.
However, the most important corollary of the theorem that we have just proven is its
application to the position and momentum operator, which gives us the famous Heisenberg
uncertainty principle. If we take Â = x̂ and B̂ = p̂, from Eq. (4.5) we have [Â, B̂] = i~Î,
and therefore:

Corollary 4.4.1 (The Heisenberg uncertainty principle)

∆ψx̂∆ψp̂ ≥ ~/2. (4.24)

Thus, the smaller the uncertainty in position, ∆ψx̂, the greater the minimum possible
uncertainty in momentum, ∆ψp̂ , and vice versa. An intuitive way to interpret the Heisen-
berg’s uncertainty principle is the following. To resolve particle position to accuracy ∆x,
we need to use a light of wavelength λ ∼ ∆x. According to the De Broglie relation this
corresponds to photons with momentum of magnitude p = h/λ ∼ h/∆x. The recoil of
measured particle introduces uncertainty in its momentum of order ∆p ∼ p ∼ h/∆x. Thus
the estimated uncertainties obey ∆x∆p ∼ h.

The plane wave solution ψk(x, t) corresponds to the unphysical state in which the uncer-
tainty in position ∆x becomes infinite and ∆p = 0, as the momentum takes the definite
value p = ~k. On the other hand, the Gaussian wavepacket defined in Eq. (3.54), with C
defined in (3.54), can be shown to be the state with minimum uncertainty. This can be
either done brute force by explicitly computing (∆ψGP

x) and (∆ψGP
p), or in a more elegant

way, as we will do by proving the next two lemmas.

Lemma 4.5: If

x̂ψ = iap̂ψ (4.25)

for some real parameter a, then

∆ψx̂∆ψp̂ = ~/2. (4.26)
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Proof: If x̂ψ = iap̂ψ, we have

(ψ, {x̂, p̂}ψ) = (ψ, x̂p̂ψ) + (ψ, p̂x̂ψ)

= (x̂ψ, p̂ψ) + (p̂ψ, x̂ψ)

= (iap̂ψ, p̂ψ) + (p̂ψ, iap̂ψ)

= (ia− ia)(p̂ψ, p̂ψ) = 0 (4.27)

which is the condition for the first term on the RHS of Eq. (4.22) to vanish. We also have
that 〈x̂〉ψ = ia〈p̂〉ψ and, since both expectations are real, this implies that 〈x̂〉ψ = 0 and
〈p̂〉ψ = 0. Hence

(x̂− 〈x̂〉ψ)ψ = ia(p̂− 〈p̂〉ψ)ψ, (4.28)

which means we have equality in the Schwarz’s inequality (Theorem 4.6) used to derive
Eq. (4.24). �

Lemma 4.6: . The condition (4.25) holds if and only if ψ(x) = C exp(−bx2) for some
constants b, C ∈ R.

Proof: If x̂ψ = iap̂ψ for some real a, we have xψ = a~∂ψ/∂x and so ψ(x) =
C exp(−bx2) for some real b = −1/(2a~), and because we have equality in Eq. (4.24) we
know the uncertainty is minimised.
Conversely, any wavefunction of the form ψ(x) = C exp(−bx2) satisfies x̂ψ = iap̂ψ for some
real a. �

Note that for the wavefunction to be normalisable, we require b > 0 and C 6= 0. We
can take C = |C| > 0 by multiplying ψ by a phase factor (which does not alter any
physical quantity: the probabilities of outcomes for any measurement are unaffected). It
can be actually shown that the condition (4.25) for minimum uncertainty in Lemma 4.8
is necessary as well as sufficient, so that the normalisable minimum uncertainty states are
precisely the wavefunctions defined by Gaussian wavepackets.

4.3 Ehrenfest Theorem

Theorem 4.7: (Ehrenfest’s theorem): The expectation value 〈Â〉ψ of an operator Â
on a state ψ evolves by

d

dt
〈Â〉ψ =

i

~
〈[Ĥ, Â]〉ψ + 〈∂Â

∂t
〉ψ (4.29)

Proof: In 1D, omitting the explicit dependence of the wavefunction ψ(x, t) on x and
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t, we have

d

dt
〈Â〉ψ =

d

dt

∫ +∞

−∞
ψ∗Âψdx

=

∫ +∞

−∞

(
∂ψ∗

∂t
Âψ + ψ∗

∂Â

∂t
ψ + ψ∗Â

∂ψ

∂t

)
dx

=
i

~

∫ +∞

−∞

(
ψ∗ĤÂψ − ψ∗ÂĤψ

)
dx+ 〈∂Â

∂t
〉ψ

=
i

~
〈[Ĥ, Â]〉ψ + 〈∂Â

∂t
〉ψ � (4.30)

The Ehrenfest’s theorem applied to the Hamiltonian operator itself yields a very interesting
result. Indeed, if we compute explicitly the commutator of the Hamiltonian operator with
x̂, p̂ and itself, we get (you can compute them as an exercise)

[Ĥ, p̂] = i~
dU(x̂)

dx
,

[Ĥ, x̂] =
−i~
m

p̂,

[Ĥ, Ĥ] = 0. (4.31)

Given that Ĥ, x̂ and p̂ do not depend explicitly on time, the RHS of Eq. (4.29) vanishes
in each case, giving

d

dt
〈p̂〉ψ = −〈dU

dx
〉ψ

d

dt
〈x̂〉ψ =

1

m
〈p̂〉ψ

d

dt
〈Ĥ〉ψ = 0, (4.32)

which are quantum versions of the classical laws dp/dt = −dU/dx, p = mv and of the
conservation of total energy respectively.
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4.4 *The harmonic oscillator revisited*

1 By considering commutation relations, we can give a much nicer and more illuminating
derivation of the energy spectrum of the harmonic oscillator. This derivation forms part of
the material for the Part II Principles of Quantum Mechanics course. It is non-examinable
material, in the sense that if you are asked to derive the energy spectrum (without any
method being stipulated) then the derivation given earlier is a perfectly adequate answer.
However, the derivation below is simpler and slicker, and of course it also may be used in
this context. Recall that the harmonic oscillator hamiltonian is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2, (4.33)

which can be written as

Ĥ =
1

2m
(p̂+ imωx̂)(p̂− imωx̂) +

iω

2
[p̂, x̂]. (4.34)

Substituting the canonical commutation relation for x̂ and p̂, we get

Ĥ =
1

2m
(p̂+ imωx̂)(p̂− imωx̂) +

~ω
2
. (4.35)

Define the operator (sometimes referred to as ladder operator or raising and lowering op-
erators)

â =
1√
2m

(p̂− imωx̂) (4.36)

â† =
1√
2m

(p̂+ imωx̂), (4.37)

where in computing the Hermitian conjugate we used the fact that x̂ and p̂ are both
Hermitian. Note that instead â is not Hermitian, and thus it does not correspond to a
physical observable, while â†â is Hermitian. In terms of â and â†, the Hamiltonian can be
written as

Ĥ = â†â+
~ω
2
. (4.38)

You can easily verify that

[â, â†] = ~ωÎ
[Ĥ, â] = −~ωâ

[Ĥ, â†] = ~ωâ†. (4.39)

1Non-examinable section
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Suppose now that χ is a harmonic oscillator eigenfunction of energy E, Ĥχ = Eχ. We
then have

Ĥâχ = [Ĥ, â]χ+ âĤχ = (E − ~ω)âχ

Ĥâ†χ = [Ĥ, â†]χ+ â†Ĥχ = (E + ~ω)âχ (4.40)

so that âχ and â†χ are eigenfunctions of energies (E − ~ω) and (E + ~ω) respectively.
We can use this to prove by induction that ânχ and (â†)nχ are eigenfunctions of energy
(E − n~ω) and (E + n~ω). For example, we know that E0 = E. The proof by induction
is complete by showing that, if (ân−1)χ is the eigenfunction with energy (E − (n − 1)~ω)
then Ĥânχ is the eigenfunction with energy (E − n~ω), which is straightforward given
that

Ĥânχ = âĤ(ân−1)χ = (E − n~ω)ânχ. (4.41)

The same proof can be achieved when considering (â†)nχ. As a consequence, if it were
true that ânχ 6= 0 for all n, there would be eigenfunctions of arbitrarily low energy, and
so there would be no ground state. However, given any physical wavefunction ψ, we have
that

〈Ĥ〉ψ =

∫ +∞

−∞
ψ∗(x)

(
~2

2m

d2

dx2
+

1

2
mω2x2

)
ψ(x) dx ≥ 0, (4.42)

since both terms are non-negative. This argument can obviously be generalised to show
that, if we have any potential U(x) such that U(x) ≥ 0 for all x, then 〈Ĥ〉ψ ≥ 0 for all
states ψ. As a result, there cannot be negative energy eigenfunctions for the harmonic
potential. Thus there must be a lowest energy (i.e. a ground state) eigenfunction χ0 such
that

0 = âχ0 ⇒ −i~
dχ0

dx
= imωxχ0, (4.43)

and hence

χ0(x) = C exp

(
−mωx

2

2~

)
(4.44)

which is indeed the ground state wavefunction we obtained in Sect. 3.5, but this time
we derived it much more simply. Now, since Ĥ = â†â + ~ω/2 and Âχ0 = 0 we have
Ĥχ0 = ~ωχ0/2, giving us the previously obtained value of ~ω/s for the ground state
energy. The excited states can be obtained by applying the operator â† n times:

(â†)nχ0 =
C

(2m)n/2
(p̂+ imωx̂)n exp

(
−mωx

2

2~

)
(4.45)

⇒ χn =
C

(2m)n/2

(
−i~ ∂

∂x
+ imωx̂

)n
exp

(
−mωx

2

2~

)
(4.46)
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and we see immediately that their energies are (n + 1/2)~ω as previously obtained by a
less direct argument. Indeed

Ĥχn =

(
ââ† +

~ω
2

)
(â†)nχ0

= â† [â, (â†)n]χ0 +
~ω
2

(â†)nχ0

=

(
n+

1

2

)
~ωχn, (4.47)

where we used the (easily verifiable) identity

[â, (â†)n] = n~ω (â†)n−1 (4.48)

We can similarly show that there cannot be eigenfunctions with energies taking values other
than (n+ 1/2)~ω. If there were such eigenfunctions χ̃, then âmχ̃ cannot vanish for any m,
since χ0 is the unique wavefunction annihilated by â. So there would be negative energy
eigenfunctions, which contradicts the result shown above. With a little more thought, we
can similarly also show that the eigenspaces must all be non-degenerate: i.e. there is (up
to scalar multiplication) only one eigenfunction of each energy.

The derivation of the harmonic oscillator spectrum in this subsection illustrates an impor-
tant general feature: symmetries or regularities in a quantum mechanical spectrum (such
as the regular spacing of the harmonic oscillator energy levels) suggest the existence of a
set of operators whose commutation relations define the symmetry or explain the regularity
(in this case, the operators Ĥ, â and â†).
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Chapter 5

The 3D Schrödinger equation

In this chapter, we will finally put everything that we have learned together to investigate
realistic QM problems in our three-dimensional world, by focussing on spherically symmet-
ric potential, in particular on the hydrogen atom, the capstone of our lectures.

5.1 3D Schrödinger equation for spherically symmetric po-
tentials

We have already introduced the time-independent Schrödinger equation in three spatial
dimensions,

− ~2

2m
∇2χ(x) + U(x)χ(x) = Eχ(x) (5.1)

As we mentioned in Chap. 2, in Cartesian coordinates the Laplace operator is given
by:

∇2 =
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2
(5.2)

It is useful to write it down in spherical polar coordinates, see Fig. 5.1,

x = r cos(φ) sin(θ)

y = r sin(φ) sin(θ)

z = r cos(θ)

where,

0 ≤ r <∞, 0 ≤ θ ≤ π, 0 ≤ φ < 2π.
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Figure 5.1: Spherical polar coordinates.

In spherical polar coordinate, the Laplace operator becomes

∇2 =
1

r

∂2

∂r2
r +

1

r2 sin2(θ)

[
sin(θ)

∂

∂θ
sin(θ)

∂

∂θ
+

∂2

∂φ2

]
, (5.3)

as you have seen in part IA Vector Calculus. Also, recall that,∫
R3

dV =

∫ 2π

0
dφ

∫ +1

−1
d (cos(θ))

∫ ∞
0

r2 dr

In this Section we only focus on spherically symmetric potential, for which the potential is
only function of r

U(r, θ, φ) ≡ U(r).

These are both the simplest potentials to study and, happily, the kinds of potentials that
are most useful for physics.

As a result, we may want to look for spherically symmetric stationary state

χ(r, θ, φ) ≡ χ(r)

for which,

∇2χ =
1

r

∂2

∂r2
(rχ) =

1

r

d2

dr2
(rχ) (5.4)

and thus the time-independent Schrödinger equation becomes,

− ~2

2mr

d2

dr2
(rχ(r)) + U(r) χ(r) = Eχ(r) (5.5)
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Figure 5.2: One-dimensional problem.

or

− ~2

2m

(
d2χ(r)

dr2
+

2

r

dχ(r)

dr

)
+ U(r) χ(r) = Eχ(r). (5.6)

We will show later that the ground state (the lowest energy bound state, if there is one)
of any 3D quantum system with spherically symmetric potential is itself spherically sym-
metric1. Hence we can always use the method that we outline in this section to obtain the
ground state.

Because of the normalisability condition, the spacial part of the wavefunction χ(r) must
be finite at r = 0 2 and∫

R3

|ψ|2 dV < ∞ ⇒
∫ ∞

0
|χ(r)|2 r2 dr < ∞

which requires that χ(r)→ 0 sufficiently fast as r →∞.

It might be useful is to define σ(r) = rχ(r). Eq. (5.6) becomes,

− ~2

2m

d2σ(r)

dr2
+ U(r)σ(r) = Eσ(r) (5.7)

This is one-dimensional Schrödinger equation on the half-line r ≥ 0. A trick is to solve
Schrödinger equation on whole line −∞ < r < +∞ by defining U(r) also on the negative
half life by the symmetry condition U(−r) = U(r) (as in Fig. 5.2). The bound state

1Cf. the 1D result that the ground state of a symmetric potential always has even parity.
2This is an additional condition as compared to the solutions in 1D
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wavefunctions on the whole real line must be either even or odd, but in this case the only
acceptable solutions are the odd parity ones σ(−)(−r) = −σ(−)(r) given that

σ(0) = 0 and

∫ ∞
0
|σ(r)|2 dr < ∞

which yields a solution to the original problem because the wavefunction χ(r) = σ(r)/r
finite at r = 0. This follows from σ(0) = 0 provided σ′(0) is finite (use L’ Hôpital’s rule)
On the other hand the normalisability condition,∫ ∞

0
|χ(r)|2 r2 dr < ∞ (5.8)

follows for χ(r) = σ(r)/r.

Now that we have proven that the only acceptable solutions for Eq. (5.7) are the odd-parity
one, when we extend it on the whole real line, we can use this trick to solve a number
of problems, for example the spherically-symmetric harmonic oscillator, or a spherically-
symmetric square well. In the latter case,

U(r) =

{
0 for r < a

U0 for r > a
(5.9)

To find odd-parity bound states states of 3D square well, analogously to what we did in
1D, we define the constants,

k =

√
2mE

~2
≥ 0, k̄ =

√
2m(U0 − E)

~2
≥ 0

and select solutions of TISE of form,

σ(r) =

{
A sin(kr) |r| ≤ a
B exp(−k̄r) r > a

(5.10)

Applying the boundary conditions, i.e. asking for the continuity of σ and σ′ at r = a, we
get

A sin(ka) = B exp(−k̄a)

and kA cos(ka) = −k̄B exp(−k̄a)

⇒ − k cot(ka) = k̄

We can then define the rescaled variables,

ξ = ka, η = k̄a, r0 =

√
2mU0

~2
a (5.11)
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Figure 5.3: Graphical solution: odd-parity levels of spherically-symmetric potential well.

as we did in the 1D case. We end up with two equations relating unknowns ξ and η.

ξ2 + η2 = r2
0

−ξ cot(ξ) = η

As in 1D, the finite number of bound states is determined by number of intersections
between the two curves in the graphical solution. Comparing Fig. 5.3 to Fig. 3.4 in Chapt. 3,
we see that, contrarily to what happens in 1D, in 3D there are no bound states if r0 < π/2
or equivalently if

U0 ≤ π2~2

8ma2

unlike one-dimensional case where we always find at least one bound state.

5.2 The angular momentum

So far, we have focussed on spherically symmetric eigenfunctions χ(r) of the Hamiltonian.
In this section, we introduce the angular momentum operator, which we need in order
to obtain the full eigenstate spectrum of the hydrogen atom. In Classical Mechanics, the
angular momentum is a vector defined as

L = x× p.
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As you might recollect from Part IA Dynamics and Relativity, the vector L is a conserved
quantity for systems with a spherically symmetric potentials U(r, θ, φ) ≡ U(r).

Definition: In Quantum Mechanics, the orbital angular momentum is an observable which
corresponds to the operator,

L̂ = x̂× p̂

= −i~x×∇

In index notation for Cartesian coordinates x = (x1, x2, x3)

L̂i = εijkx̂j p̂k = −i~ εijkxj
∂

∂xk

where εijk is the Levi-Civita alternating tensor. Explicitly,

L̂ = −i~
(
x2

∂

∂x3
− x3

∂

∂x2
, x3

∂

∂x1
− x1

∂

∂x3
, x1

∂

∂x2
− x2

∂

∂x1

)

Properties of the angular momentum operator:

• The operators L̂i are Hermitian, as all operators associated to physical observables.

• The different components of the angular momentum operator do not commute with
each other: [L̂i, L̂j ] 6= 0 for i 6= j. Thus, different components of angular momentum
cannot be measured simultaneously.
We can check this explicitly by computing the commutator,

[L̂1, L̂2] f(x1, x2, x3) =

−~2
[(
x2

∂

∂x3
− x3

∂

∂x2

)(
x3

∂

∂x1
− x1

∂

∂x3

)
−
(
x3

∂

∂x1
− x1

∂

∂x3

)(
x2

∂

∂x3
− x3

∂

∂x2

)]
f(x1, x2, x3)

In the above equation many term cancels leaving,

[L̂1, L̂2] f = −~2

(
x2

∂

∂x1
− x1

∂

∂x2

)
f(x1, x2, x3)

= +i~ L̂3f(x1, x2, x3) (5.12)

A similar calculation for the other components confirms the commutation relations,

[L̂2, L̂3] = i~L̂1 and [L̂1, L̂3] = −i~L̂2 (5.13)

• [L̂i, L̂j ] = i~εijkL̂k, which combines the three independent commutation relations
that we found above, using index notation.
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In Classical Mechanics the magnitude of the angular momentum is L = |L|. Thus,

L2 = L2
1 + L2

2 + L2
3

Definition: In Quantum Mechanics we define the total angular momentum opera-
tor,

L̂2 = L̂2
1 + L̂2

2 + L̂2
3

Properties of the total angular momentum operator

• The total angular momentum L̂2 commutes with each of the components of angular
momentum L̂i, i = 1, 2, 3.
We can check this explicitly by taking the commutator with the component i = 1.
Now evaluate the commutators:

[L̂1, L̂
2] = [L̂1, L̂

2
1 + L̂2

2 + L̂2
3]. (5.14)

Clearly

[L̂1, L̂
2
1] = 0 (5.15)

while

[L̂1, L̂
2
2] = [L̂1, L̂2]L̂2 + L̂2[L̂1, L̂2]

Then using (5.12) we obtain,

[L̂1, L̂
2
2] = i~

[
L̂3L̂2 + L̂2L̂3

]
(5.16)

and,

[L̂1, L̂
2
3] = [L̂1, L̂3]L̂3 + L̂3[L̂1, L̂3]

= −i~
[
L̂3L̂2 + L̂2L̂3

]
(5.17)

Finally adding equations (5.14), (5.15), (5.16) and (5.17) we obtain,

[L̂1, L̂
2] = [L̂1, L̂

2
1] + [L̂1, L̂

2
2] + [L̂1, L̂

2
3] = 0

An identical calculation of [L̂2, L̂
2] and [L̂3, L̂

2] confirms that,

[L̂i, L̂
2] = 0 (5.18)

for i = 1, 2, 3 �.
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• The total angular momentum operator commutes with an Hamiltonian featuring a
spherically symmetric potential. This means that the angular momentum operators
care nothing for how the wavefunctions depend on the radial coordinate r. The angu-
lar momentum of a state is, perhaps unsurprisingly, encoded in how the wavefunction
varies in the angular directions θ and Φ. To check the above property, we have to
prove first the following commutation relations,

[L̂i, x̂j ] = εikr[x̂kp̂r, x̂j ]

= εikrx̂k[p̂r, x̂j ] = εikrx̂a(−i~δrj Î)

= i~ εijkx̂k, (5.19)

where in the first line we substituted the definition of the angular momentum oper-
ator using the index notation and in the second we used the canonical commutation
relation [x̂i, p̂j ] = i~δij Î. Analogously you can verify that

[L̂i, p̂j ] = i~ εijkp̂k (5.20)

From these obtain,

[L̂i, x̂
2
1 + x̂2

2 + x̂2
3] = 0

[L̂i, p̂
2
1 + p̂2

2 + p̂2
3] = 0

The Hamiltonian for a particle on mass m moving in a spherically symmetric potential
has the form,

Ĥ = − ~2

2m
∇2 + U(r)

=
|p̂|2

2m
+ U(r̂)

Here r̂ is the operator which acts on functions f(x) as rÎ where r is the radial
coordinate and Î is the unit operator. Using the above commutation relations show
that Ĥ commutes with L̂i for i = 1, 2, 3 and therefore also with L̂2:

[Ĥ, L̂i] = [Ĥ, L̂2] = 0 (5.21)

The properties that we have listed so far give us an important physics insight. In particular,
the commutation relations (5.18) and (5.21) imply that Ĥ, L̂2 and any one of the three
operators L̂i, i = 1, 2, 3 form a set of three mutually commuting operators. We must choose
only one of the L̂i because they do not commute with each other (5.13,5.13). By convention
we choose L̂3. Labelling the Cartesian coordinates in the usual way as x1 = x ,x2 = y,
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x3 = z, we also denote this operator as L̂z or the “z-component of angular momentum”.
Thus we choose a set of mutually commuting operators,{

Ĥ , L̂2, L̂3

}
(5.22)

It is important to outline the following facts:

• As the operators commute we can find simultaneous eigenstates of all three (See
Theorem 4.4).

• The corresponding eigenvalues are the observables energy, total angular momentum
and the z-component of angular momentum.

• The set (5.22) is maximal, in other words, we cannot construct another independent
operator (other than the unit operator) which commutes with each of Ĥ, L̂2 and L̂3.

We can now conclude this section by finding the simultaneous eigenfunctions of the total
angular momentum and the z component of the angular momentum operators. In spherical
polar coordinates we have (see AppendixA.6),

L̂2 = − ~2

sin2(θ)

[
sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

∂2

∂φ2

]
(5.23)

L̂3 = −i~ ∂

∂φ
(5.24)

Considering the eigenvalue equation for L̂3, we look for simultaneous eigenfunctions of L̂2

and L̂3 of the form y(θ) exp(imφ),

L̂3 exp(imφ) = ~m exp(imφ)

But wavefunctions must be single-valued functions on R3 and should therefore be invariant
under φ→ φ+ 2π. The function exp(imφ) is invariant provided,

exp(2πim) = 1 ⇒ m ∈ Z

Thus the eigenvalues of L̂3 have the form ~m for integer m. Equivalently, the z-component
of angular momentum is quantised in integer multiples of ~. This agrees with Bohr’s
quantisation condition.
Similarly we must have,

L̂2 y(θ) exp(imφ) = λ y(θ) exp(imφ)

for some eigenvalue λ. Using the explicit form (5.23) for L̂2 we find that y(θ) must obey
the equation,

1

sin(θ)

∂

∂θ

(
sin(θ)

∂y(θ)

∂θ

)
− m2

sin2(θ)
y(θ) = − λ

~2
Y (θ) (5.25)
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This is the associated Legendre equation. The non-singular solutions are known as associ-
ated Legendre functions,

y(θ) = Pl,m (cos(θ))

= (sin(θ))|m|
d|m|

d (cos(θ))|m|
Pl (cos(θ)) (5.26)

where Pl(cos(θ)) are (ordinary) Legendre polynomials (see IB Methods). Without proof,
the expression (5.26) solves equation (5.25) with eigenvalue,

λ = l(l + 1) ~2 with l = 0, 1, 2 . . .

There is also a further constraint on the integers l and m which reads,

−l ≤ m ≤ +l

The simultaneous eigenfunctions of L̂2 and L̂3 are therefore labelled by two integers l > 0
with −m ≤ l ≤ +m and take the form,

Yl,m(θ, φ) = Pl,m (cos(θ)) exp(imφ)

They obey,

L̂2Yl,m(θ, φ) = l(l + 1)~2Yl,m(θ, φ)

L̂3Yl,m(θ, φ) = m~Yl,m(θ, φ)

The functions Yl,m are known as Spherical Harmonics The indices l and m are called quan-
tum numbers, in particular the integer l is called the total angular momentum quantum
number while the integer m is called the azimuthal quantum number. Finally the constraint
−l ≤ m ≤ +l is the quantum version of the classical inequality,

−|L| ≤ Lz ≤ +|L|

which follows because Lz = |L| cos(θ).
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To conclude, we give the explicit functional form of some spherical harmonics:

Y0,0(θ, φ) =

√
1

4π

Y1,0(θ, φ) =

√
3

4π
cos(θ)

Y1,±1(θ, φ) = ∓
√

3

8π
sin(θ) exp(−iφ)

Y2,0(θ, φ) =

√
5

16π

(
3 cos2(θ)− 1

)
Y2,±1(θ, φ) = ∓

√
15

8π
sin(θ) cos(θ) exp(∓iφ)

Y2,±2(θ, φ) =

√
15

32π
sin2(θ) exp(∓2iφ),

where the normalisation constants are determined by the normalisation condition∫ 2π

0
dΦ

∫ +1

−1
d cos θ Y ∗l,m(θ, φ)Yl,m(θ, φ) = 1. (5.27)

One can also verify explicitly the orthogonality of spherical harmonics, i. e.∫ 2π

0
dΦ

∫ +1

−1
d cos θ Y ∗l′,m′(θ, φ)Yl,m(θ, φ) = δll′δmm′ . (5.28)

5.3 The Hydrogen Atom

The hydrogen (H) atom consists of a single proton p+ and an electron e−. As before treat
the proton as stationary at the origin of spherical polar coordinates, i.e. we model the
hydrogen atom by treating the proton as infinitely massive and at rest at the origin. The
Coulomb attraction,

F (r) = −∂U(r)

∂r
= − e2

4πε0r2

corresponds to a potential

U(r) = − e2

4πε0r
, (5.29)

which is sketched in Fig. 5.4.
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We notice that the potential is infinitely deep. The energy is defined so that the electron
is at rest at r = ∞, where E = 0, and that for bound states the energy is negative
E < 0.

The Laplacian operator in spherical polar coordinates was given in Eq. (5.3). Using (5.23)
we can write it as

−~2∇2 = −~2

r

∂2

∂r2
r +

L̂2

r2

which gives,

Ĥ = − ~2

2mr

∂2

∂r2
r +

L̂2

2mr2
+ U(x)

In particular, for the Hydrogen atom the time-independent Schrödinger equation be-
comes,

Ĥχ = − ~2

2m

(
d2χ

dr2
+

2

r

dχ

dr

)
+

L̂2

2mr2
χ − e2

4πε0r
χ = Eχ, (5.30)

where χ are functions of (r, θ,Φ). Because of what we discussed at the end of Sect. 5.3, we
now look for a simultaneous eigenstate of,{

Ĥ , L̂2, L̂3

}
by setting,

χ(r, θ, φ) = g(r) Yl,m(θ, φ) (5.31)

where Yl,m is a spherical harmonic.

5.3.1 The radial wavefunction (l = 0)

We first focus on wavefunctions with spherical symmetry, i.e. l = 0, that resemble the
Bohr model in the classical limit (although with some important differences). In this case
Y0,0(θ, φ) = 1/

√
4π, so we can substitute

χ(r, θ, φ) = χ(r)/
√

4π.

These are not the only eigenfunctions of the Hamiltonian, as in the next section, we will
encounter eigenfunctions that also depend on (θ,Φ). The spherically symmetric eigenfunc-
tions χ(r) obey the Schrödinger equation (5.6) with the Coulomb potential (5.29)

− ~2

2me

(
d2χ(r)

dr2
+

2

r

dχ(r)

dr

)
− e2

4πε0r
χ(r) = Eχ(r),
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where me is the mass of the electron. To simplify this equation, we define the rescaled
variables,

ν2 = −2mE

~2
> 0, β =

e2me

2πε0~2

in terms of which Schrödinger equation becomes,

d2χ(r)

dr2
+

2

r

dχ(r)

dr
+

(
β

r
− ν2

)
χ(r) = 0. (5.32)

We notice that

i) The large-r asymptotic behaviour of the eigenfunctions is determined by the first and
last terms in (5.32). In the limit r →∞ we have,

d2χ

dr2
− ν2χ ' 0

which implies that the solutions of (5.32) have behaviour,

χ(r) ∼ exp(±νr) as r →∞. (5.33)

We must choose the solution with the - sign, i.e. an exponentially decaying solution,
in order to have normalisable eigenfunctions.

ii) The eigenfunctions should be finite at r = 0. This will guide us in the solution of the
problem.

As in the analysis of the harmonic oscillator, it is convenient to separate out the exponential
dependence of the eigenfunction and look for a solution of the form,

χ(r) = f(r) exp(−νr). (5.34)

If we plug it into the Schrödinger equation (5.32), it becomes,

d2f

dr2
+

2

r
(1− νr)df

dr
+

1

r
(β − 2ν)f = 0, (5.35)

where we omitted the explicit dependence of f on r. Eq. (5.35) is a homogeneous, linear
ODE with a regular singular point at r = 0. We now apply the standard method and look
for a solution in the form of a power series around r = 0,

f(r) = rc
∞∑
n=0

anr
n. (5.36)
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By substituting the series (5.36) for f(r) in (5.35) we get

∞∑
n=0

[
an(c+ n)(c+ n− 1)rc+n−2 +

2

r
(1− νr)an(c+ n)rc+n−1 + (β − 2ν)anr

c+n−1

]
= 0

The lowest power of r which occurs on the LHS is a0r
c−2 with coefficient c(c − 1) + 2c =

c(c+ 1). Equating this to zero yields the indicial equation

c(c+ 1) = 0

with roots c = 0 and c = −1. However, the root c=-1 would imply χ(r) ∼ 1/r near r = 0.
This yields a singular eigenfunction which violates the boundary condition at the origin.
Thus we choose root c = 0 and our series solution simplifies to

f(r) =
∞∑
n=0

anr
n. (5.37)

If we now collect all terms of order rn−2 on the LHS of (5.35) and equate them to zero to
get,

n(n− 1)an + 2nan − 2ν(n− 1)an−1 + (β − 2ν)an−1 = 0 (5.38)

or more simply,

an =
(2νn− β)

n(n+ 1)
an−1 (5.39)

The above recurrence relation determines all the coefficients an in the series (5.37) in
terms of the first coefficent a0. As in our analysis of the harmonic oscillator, there are two
possibilities,

• The series (5.37) terminates. In other words ∃ N > 0 such that an = 0 ∀ n ≥ N .

• The series (5.37) does not terminate. In other words @ N > 0 such that an = 0 ∀
n ≥ N .

Proposition: If the series in Eq. (5.37) does not terminate, then the function χ(r) =
f(r)e−νr is not normalisable.

Proof: The asymptotic (large-n) behaviour of the coefficients an is given by

an
an−1

→ 2ν

n
as n→∞. (5.40)

We can now compare this with the power series for the function,

g(r) = exp(+2νr) =

∞∑
n=0

bnr
n with bn =

(2ν)n

n!
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whose coefficients obey,

bn
bn−1

=
(2ν)n

(2ν)n−1

(n− 1)!

n!
=

2ν

n

We deduce that (5.40) is consistent with the asymptotic behaviour

f(r) ∼ g(r) = exp(+2νr) ⇒ χ(r) = f(r) exp(−νr) ∼ exp(+νr)

as r → ∞ which is consistent with the expected exponential growth (5.33) of generic
solutions of (5.32). This corresponds to non-normalisable eigenfunctions which we reject.
�

As in the solution for the harmonic oscillator in Chapt. 3, if the series does not termi-
nate, the Hamiltonian does not have normalisable eigenfunctions. To give a normalisable
eigenfunction therefore, the series (5.37) must terminate. There must be an integer N > 0
such that aN = 0 with aN−1 6= 0. From the recurrence relation (5.39) we can see that this
happens if and only if,

2νN − β = 0 ⇒ ν =
β

2N
.

Recalling the definitions ν2 = −2mE
~2 and β = e2me

2πε0~2 the equation above yields the spectrum
of energy levels,

E = EN = − e4me

32π2ε20~2

1

N2
(5.41)

for N = 1, 2, . . .. The resulting spectrum is identical to that of the Bohr atom. Thus, the
Schrödinger equation predicts the same set of spectral lines for Hydrogen which are in good
agreement with experiment, although - as we will see in the next sections - the degeneracies
(ie number of eigenstates with the same energy) are still wrong. An important difference
is that Bohr’s spectrum was based on quantisation of angular momentum corresponding
to L = N~. In contrast the eigenfunctions we have constructed are spherically symmetric
and therefore have zero angular momentum. We will see in the next two sections that,
including the eigenfunctions that are not spherically symmetric, there are more eigenfunc-
tions corresponding to the eigenvalues in (??), so the degeneracy of the excited levels is
larger than one.

To conclude this section, we now want to determine the eigenfunctions corresponding to
the eigenvalues of Eq. (5.41). We do it by setting ν = β/2N , the recurrence relation (5.39),
which becomes,

an
an−1

=
2νn− β
n(n+ 1)

= −2ν

(
N − n
n(n+ 1)

)
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This formula can be used to give expliciot results for the first few levels (see Figure
5.5),

χ1(r) = exp(−νr)
χ2(r) = (1− νr)exp(−νr)

χ3(r) =

(
1− 2νr +

2

3
(νr)2

)
exp(−νr).

The eigenfunction for the N -th level can be written as,

χN (r) = LN (νr) exp(−νr)

where LN is a polynomial of order N − 1 known as the N -th Laguerre polynomial. The
wavefunction χN (r) thus has N − 1 nodes or zeros. Finally, we want to normalise the
eigenfunctions to 1, by defining χ̃1(r) = A1χ1(r) = A1 exp(−νr). The constant A1 is fixed
by normalisation condition, ∫

R3

|χ̃1(r)|2 dV = 1

Evaluating the integral we find,

|A1|2
∫ 2π

0
dφ

∫ +1

−1
d(cos θ)

∫ ∞
0

dr r2 exp(−2νr) = 1

Thus |A1|2 = 1/I2 where,

I2 = 4π

∫ ∞
0

r2 exp(−2νr) =
π

ν3

Finally we can choose A1 to be real by choosing the complex phase to be zero and

A1 =
1√
π

(
e2me

4πε0~2N

) 3
2

(5.42)

Exercise Prove that in the spherically-symmetric ground state,

〈r〉 =
3

2
r1

where r1 = 2/β = 4πε0~2/mee
2 is the Bohr radius as defined in Sect. 1.
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5.3.2 The full wavefunction

We now look for a simultaneous eigenstate of,{
Ĥ , L̂2, L̂3

}
for generic values of (l,m), so we set

χ(r, θ, φ) = g(r) Yl,m(θ, φ) (5.43)

where Yl,m is a spherical harmonic. In particular, as above, we have,

L̂2Yl,m(θ, φ) = l(l + 1)~2Yl,m(θ, φ).

Substituting (5.43) into (5.30) we obtain a second order linear homogeneous ODE for
g(r),

− ~2

2m

(
d2g(r)

dr2
+

2

r

dg(r)

dr

)
+

~2l(l + 1)

2mr2
g(r) − e2

4πε0r
g(r) = Eg(r) (5.44)

As we did in Sect. 5.2, we define the rescaled variables,

ν2 = −2mE

~2
> 0, β =

e2me

2πε0~2

in terms of which the Schrödinger equation becomes,

d2g

dr2
+

2

r

dg

dr
− l(l + 1)

r2
g +

β

r
g − ν2g = 0, (5.45)

where we omitted the dependence of g on r. The analysis proceeds exactly as for the
spherically symmetric case that we have worked on in Sect. 5.2. In particular, the large-r
asymptotic behaviour of g(r) is determined by the first and last terms in (5.45). In the
limit r →∞ we have,

g(r) ∼ exp(−νr) as r →∞ (5.46)

where we choose an exponentially decaying solution for a normalisable eigenfunction. As
before, it is convenient to separate out the exponential dependence of the eigenfunctions
and look for a solution of the form,

g(r) = f(r) exp(−νr)

The Schrödinger equation (5.45) now becomes,

d2f

dr2
+

2

r
(1− νr)df

dr
− l(l + 1)

r2
f +

1

r
(β − 2ν)f = 0 (5.47)
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Equation (5.47) is a homogeneous, linear ODE with a regular singular point at r = 0. Apply
standard method and look for a solution in the form of a power series around r = 0,

f(r) = rσ
∞∑
n=0

anr
n (5.48)

Substitute series (5.48) for f(r) in (5.47). We observe that the lowest power of r which
occurs on the LHS is a0r

σ−2 with coefficient σ(σ− 1) + 2σ− l(l+ 1) = σ(σ+ 1))− l(l+ 1).
Equating this to zero yields the indicial equation,

σ(σ + 1) = l(l + 1)

with roots σ = l and σ = −l − 1. The root σ = −l − 1 yields g(r) ∼ 1/rl+1 near r = 0,
which is singular at the origin. Thus we choose root σ = l and our series solution simplifies
to,

f(r) = rl
∞∑
n=0

anr
n (5.49)

We now collect all terms of order rl+n−2 on the LHS of (5.47) and equate them to zero to
get,

(n+ l)(n+ l − 1)an + 2(n+ l)an − l(l + 1)an −
2ν(n+ l − 1)an−1 + (β − 2ν)an−1 = 0

or more simply,

an =
(2ν(n+ l)− β)

n(n+ 2l + 1)
an−1 (5.50)

This recurrence relation determines all the coefficients an in the series (5.49) in terms of
the first coefficient a0. As above, there are two possibilities,

• The series (5.49) terminates. In other words ∃ nmax > 0 such that an = 0 ∀ n ≥ nmax.

• The series (5.49) does not terminate. In other words @ nmax > 0 such that an = 0 ∀
n ≥ nmax.

As before, the second possibility does not yield normalisable wave functions and the proof is
exactly the same as the one provided in Lemma 5.1. To give a normalisable wave-function
therefore, the series (5.49) must therefore terminate. There must be an integer nmax > 0
such that anmax = 0 with anmax−1 6= 0. From the recurrence relation (5.50) we can see that
this happens if and only if,

2νN − β = 0 ⇒ ν =
β

2N
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for an integer N = nmax + l > l. Recalling the definitions,

ν2 = −2mE

~2
> 0, β =

e2me

2πε0~2

This yields the spectrum of energy levels,

E = EN = − e4me

32π2ε2
0~2

1

N2
(5.51)

for N = 1, 2, . . .. The resulting spectrum of energy eigenvalues is identical to that of the
Bohr atom and to our analysis of the spherically-symmetric wavefunctions.
The new feature is that there is a large degeneracy at each level. To see this note that the
energy EN given in (5.51) only depends on N and not on the angular momentum quantum
numbers,

0 ≤ l ≤ N − 1 −l ≤ m ≤ +l

Thus the total degeneracy at each level is,

D(N) =

N−1∑
l=0

+l∑
−l

1

=

N−1∑
l=0

(2l + 1)

= 2

(
1

2
N(N − 1)

)
+ N = N2

We now put everything together to find the full spectrum of eigenstates of the hydrogen
atom:

χN,l,m(r, θ, φ) = ξl LN,l(ξ) exp(−ξ) Yl,m(θ, φ)

where,

ξ =
βr

2N
=

e2mr

4Nπε0~2

LN,l(ξ) is a generalised Laguerre polynomial and Yl,m(θ, φ) is a spherical harmonic. The
quantum numbers are,

• N = 1, 2, 3, . . . is the principal quantum number.

• l = 0, 1, . . . , N − 1 is the total angular momentum quantum number.
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• The integer m with −l ≤ m ≤ +l is the quantum number for the z-component of
angular momentum.

Now, comparing the full result to the Bohr model of atom, we see that the latter emerges
for states with m = l ' N >> 1. In this case the z-component of angular momentum
Lz = m~ ' N~ and the total angular momentum L =

√
l(l + 1)~2 ' N~.

The radial probability distribution,

r2g(r)2 ∼ r2(l+1) exp

(
− βr

2(l + 1)

)
∼ r2N exp

(
−βr
N

)
Attains a maximum where,

2N

r
− β

N
= 0 (5.52)

Thus the peak value is at,

rpeak ' 2N2

β
= N2r1

where r1 = 2/β is the Bohr radius. Thus the radial probability distribution is therefore
peaked around the radius of the N ’th Bohr orbit.

5.4 Towards the periodic table

We could try to generalise this discussion to atoms other than hydrogen. These have a
nucleus with charge +Ze, orbited by Z independent electrons, where the atomic number Z
is an integer greater than one. If we take the nucleus to be fixed, as we did with hydrogen,
this means we need to solve the Schrödinger equation for Z independent electrons in a
central Coulomb potential. This is not so simple, since the electrons also interact with
each other. If we ignore this temporarily, we can obtain solutions of the form

χ(x1, ...,xZ) = χ(x1)...χ(xZ), (5.53)

where the χj are the rescaled solutions for the hydrogen atom (the rescaling is because the
nucleus has charge +Ze instead of +e). The energy is just the sum

E =

Z∑
i=1

Ei, (5.54)
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It turns out that for relatively small atoms this gives qualitatively the right form, with
corrections arising from the electron-electron interactions that can be calculated using
perturbation theory (which you will do in Principles of Quantum Mechanics). However,
we also need to allow for the Pauli exclusion principle, which implies that no two electrons in
the same atom can be in the same state. So the lowest overall energy state is given by filling
up the energy levels in order of increasing energy, starting with the lowest. Allowing for
the twofold degeneracy arising from spin (which you will discuss in Principles of Quantum
Mechanics) we have 2 × N2 states in the N -th energy level. This gives us an atom with
a full energy level with Z = 2, 10 = 8+2, . . . for N = 1, 2, · · · ; these are the elements
helium, neon...The elements with outer electrons in the 1st and 2nd energy levels fill out
the corresponding first two rows of the periodic table. The analysis gets more complicated
as atoms get larger, because electron-electron interactions become more important, and
this qualitative picture is not adequate for the third and higher rows of the periodic table.
We can understand that helium and neon are chemically inert (i.e. un-reactive) as a
consequence of the fact that they have full energy levels, which turns out to be a very
stable state that does not easily undergo transitions by capturing or losing electrons.
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Figure 5.4: The Coulomb potential and the energy levels of the hydrogen atom

Figure 5.5: Spherically symmetric eigenfunctions χ1(r), χ2(r), χ3(r) corresponding to the
the three lowest energy levels of the hydrogen atom.
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Appendix

A.1 Fundamental constants

• Planck’s constant, ~ = 1.05 × 10−34 J s

• Speed of light, c = 3 × 108 ms−1

• Charge of the electron, e = 1.60 × 10−19 C

• Mass of the electron, me = 9.11 × 10−31 kg

• Mass of proton, mp = 1.67 × 10−27 kg

• The vacuum permittivity constant, ε0 = 8.854 × 10−12 F m−1.

A.2 Basic facts about waves

Complex wave-form,

A exp (ik · x− iωt)

It is useful to define the following quantities:

• Wave-vector k.

• Wavelength λ is given as λ = 2π/|k|.

• Angular frequency ω.

• Frequency ν = ω/2π.
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The velocity of a wave vwave is given as,

vwave =
ω

|k|
= νλ.

For electromagnetic waves this is equal to c.

A.3 Derivation of the Planck formula for the black-body ra-
diation*

In the last decades of the 19th century, physicists were very keen to understand the nature
of black-body radiation, i.e. of the radiation emitted by a totally absorbing heated body
that had come into thermal equilibrium at a given temperature T . The energy density
ρ(ν, T ) of the light radiated at the equilibrium temperature as a function of the frequency
radiation ν had been measured and it was known on thermodynamic grounds to be an
universal function of ν and T . How to calculate this function? The first one to attempt it
was Lord Rayleigh in 1900. He modelled the black body as a cubical box of width L. Due
to boundary conditions, the wavenumber k of the radiation field in the box must change
by an integer multiple of 2π in a distance L. As a result, the radiation field is a Fourier
sum over normal modes proportional to

exp (ik · x) , with k =
2πn

L
, (A.1)

where n is characterised by a vector of integers (nx, ny, nz) ∈ Z and a polarisation state
(either left- or right-circular polarisation). The angular frequency of each normal mode is
given by

ω =
2πc

λ
= |k|c =

2π|n|c
L

. (A.2)

Each normal mode occupies a cell of unit volume in the space of the vectors n, so the
number of normal modes N(ω)dω in the range of frequencies between ω and ω + dω is
twice the volume of the corresponding shell in the n vector space. So, the number dN
of these modes in a large free-space volume V � λ3, within a small frequency interval
dω � ω near some ω is

dN = 2V
d3k

(2π)3
= 2V

4πk2 dk

(2π)3
= V

ω2

π2c3
dω (A.3)

where the factor of 2 accounts for the two possible polarisation states of the electromagnetic
waves, c is the speed of light, k = |k| = ω/c is the modulus of the wave number, and
λ = 2π/k is the radiation wavelength. Rayleigh noted that in classical statistical mechanics,
in any system that can be regarded as a collection of harmonic oscillators, the mean energy
of each oscillator 〈E(T )〉 is simply proportional to the temperature, a relation written as
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〈E(T )〉 = kBT , where kB is a fundamental constant, known as Boltzmann’s constant. If
this is applied to the radiation inside the black body, the energy density in the radiation
between frequencies ν and ν + dν would then be given by what has come to be called the
Rayleigh–Jeans formula

ρ(ω) =
〈E(T )〉N(ω)

L3
(A.4)

=
ω2

π2c3
kBT. (A.5)

The prediction that ρ(ω) is proportional to ω2 was actually in agreement with observation
for small values of ω , but failed badly for larger values. Indeed, if it held for all frequencies
at a given temperature, then the total energy density ρ(ω)dω would be infinite! This
became known as the ultraviolet catastrophe.

The correct value was published shortly later by Max Planck. The initial formula was
just guesswork, as he noted that the black-body radiation data could all be fitted by the
formula

ρ(ω) =
ω2

π2c3

~ω
exp(~ω/kBT )− 1

, (A.6)

where ~ = h/2π was a constant, which was fitted to experimental data along with kB to
give

h ∼ 6.610−34Joule× sec and kB ∼ 1.410−16erg/K. (A.7)

The dimension of the new constant h (now universally knowns as the Planck constant),
are

[h] = M L2 T−1 = [energy]× [time] = [position]× [momentum]. (A.8)

Although at the beginning it appeared simply as a constant in a fit of a set of data, we now
think of this constant as representing the “strength” of quantum effects. Despite having
these new profound features, early 20th century physicists were guided by the expectation
to recover classical physics in limit h→ 0. Indeed, in this limit, Eq. (A.6) reduces exactly
to Eq. (A.5). After the initial formula to fit the data, Planck later gave a derivation of
the above formula, based on the assumption that the radiation inside the back-body was
quantised, i.e. the energy of the radiation comes in integer multiples of hν. A simpler
derivation compared to the original by Planck is given by Weinberg in Ref. [7], following
the derivation of the black-body formula by Hendrik Lorentz in 1910. The assumption by
Rayleigh that the mean energy of each normal mode is simply proportional to the tem-
perature T stemmed from the fact that in a system containing a large number of identical
systems at thermal equilibrium at a given temperature T (like light modes in a black-
body cavity), the probability that one of these systems has an energy E is proportional
to exp(−E/kBT ). If the energies of light quanta were continuously distributed, this would
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give a mean energy

〈E(T )〉 =

∫∞
0 E exp (−E/kBT )dE∫∞

0 exp(−E/kBT )dE
= kBT. (A.9)

The energy density in radiation between frequencies ω and ω + dω is again given by
Eq. (A.4), and the above mean energy yields the Rayleigh-Jeans formula, Eq. (A.5). But if
the energies are instead quantised, i.e. if they comes only as integer multiples of ~ω, then
the mean energy is given by

〈E(T )〉 =

∑∞
n=0 n~ω exp(−n~ω/kBT )∑∞

0 exp(−n~ω/kBT )
=

~ω
exp(~ω/kBT )− 1

, (A.10)

which now yields the Planck formula.

A.4 Basic facts about atoms

An atom has a positively charged nucleus surrounded by negatively charged electrons.
Nucleus: Z protons, each of positive charge +e. Z is known as the atomic number. Also
has A−Z neutrons, each of mass mn ' mp, which carry no electric charge. Total mass of
the nucleus,

M = Zmp + (A− Z)mn ' Amn

A is known as the atomic weight.
A neutral atom has Z electrons each of negative charge −e. If some are removed the atom
becomes a positive ion.
The electrons are much lighter than the protons and neutrons of the nucleus: me/mp '
1/1837. Nearly all the mass of the atom resides in the nucleus.
Electrons are held in the atom by the electrostatic attraction between each electron and
the nucleus.
Protons and neutrons are bound in the nucleus by the strong nuclear force. Though
short-ranged, this is much stronger than the electrostatic repulsion between protons. The
electrons do not feel the strong force.
Diameter of nucleus ∼ 10−15 m. Diameter of whole atom ∼ 10−10 m. Because the size of
the nucleus is so much smaller than that of the whole atom, for the purpose of understanding
atomic structure the nucleus can be treated as a point charge.
Chemical properties of atoms are determined only by the number of electrons Z.
Isotopes are atoms with the same value of Z but different A. They have the same chemistry
but different radioactive properties.
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A.5 Useful Dynamics and Relativity formulae

• Non-relativistic mechanics Free particle of mass m, moving at velocity v. Speed
v = |v| << c. Momentum and energy of the particle are given as,

p = mv E =
1

2
mv2

Thus we have

E =
|p|2

2m

.

• Relativistic mechanics Free particle of mass m, moving at velocity v. Speed
v = |v|. Momentum and energy of the particle are given as,

p =
mv√

1− v2/c2
E =

mc2√
1− v2/c2

Thus we have,

E =
√
m2c4 + |p|2c2.

For the special case of a massless particle this reduces to E = c|p|.

A.6 Useful Integrals

I(a) =

∫ +∞

−∞
dx exp(−a x2) =

√
π

a
(A.11)

The integral exists for complex a provided <[a] > 0. The integral,

I2(a) =

∫ +∞

−∞
dx x2 exp(−a x2) =

1

2

√
π

a3
(A.12)

is obtained by differentiating (A.11) with respect to the parameter a.

Another useful integral is,

J (a, b) =

∫ +∞

−∞
dx cos(bx) exp(−a x2) =

√
π

a
exp

(
− b

2

4a

)
(A.13)

Again the integral exists for complex a and b provided <[a] > 0.
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To prove (A.13), first note that

J (a, 0) = I(a) =

√
π

a

Differentiating J (a, b) wrt to b yields,

∂J
∂b

= −
∫ +∞

∞
dx x sin(bx) exp(−a x2)

Integrating by parts on the RHS then gives

∂J
∂b

=

[
sin(bx)

2a
exp(−ax2)

]+∞

−∞
−
∫ +∞

∞
dx

b

2a
cos(bx) exp(−a x2)

= − b

2a
J

Integrating this relation we obtain,

J (a, b) = J (a, 0) exp

(
− b

2

4a

)
=

√
π

a
exp

(
− b

2

4a

)

We can now use (A.11) and (A.13) to do the Gaussian integral discussed below equation
(3.47) in the text,

ψ(x, t) =

∫ +∞

−∞
dk exp (F (k))

with,

F (k) = −1

2
αk2 + βk + δ

where the complex constants α, β and γ are defined in the text. Noting that exp(−iz) =
cos(z)− i sin(z) for any complex number z we find,

ψ(x, t) = eδ
∫ +∞

−∞
dk (cos(iβk)− i sin(iβk)) exp

(
−1

2
αk2

)
The second term in brackets vanishes as the integrand is an odd function of k. The
remaining integral can be evaluated using (A.13) with b = iβ and a = α/2, to get,

ψ(x, t) =

√
2π

α
exp

(
β2

2α
+ δ

)
as claimed in the text.
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A.7 Angular momentum operators in spherical polar coor-
dinates

Relation between cartesian and spherical polar coordinates,

x1 = r sin(θ) cos(φ) x2 = r sin(θ) sin(φ) x3 = r cos(θ)

Using the chain rule,

∂

∂x1
=

(
∂r

∂x1

)
∂

∂r
+

(
∂θ

∂x1

)
∂

∂θ
+

(
∂φ

∂x1

)
∂

∂φ

= sin(θ) cos(φ)
∂

∂r
+ cos(θ) cos(φ)

1

r

∂

∂θ
− sin(φ)

r sin(θ)

∂

∂φ

and similarly for ∂/∂x2 and ∂/∂x3.

Proceeding in this way, we obtain

L̂1 = −i~
(
x2

∂

∂x3
− x3

∂

∂x2

)
= i~

(
cos(φ) cot(θ)

∂

∂φ
+ sin(φ)

∂

∂θ

)
Similarly we find

L̂2 = i~
(

sin(φ) cot(θ)
∂

∂φ
− cos(φ)

∂

∂θ

)
and,

L̂3 = −i~ ∂

∂φ

Finally can check that,

L̂2 = L̂2
1 + L̂2

2 + L̂2
3 = − ~2

sin2(θ)

[
sin(θ)

∂

∂θ

(
sin(θ)

∂

∂θ

)
+

∂2

∂φ2

]

The alternating tensor Indices i, j, k = 1, 2, 3. εijk = 0 unless all indices are different,
i 6= j 6= k 6= i. If all indices are different, then εijk = +1 if (ijk) is a cyclic permutation of
(123) and −1 otherwise.
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